CAREER: Interval Exchange Transformations and Translation Surfaces

职业:区间交换变换和平移曲面

基本信息

  • 批准号:
    1452762
  • 负责人:
  • 金额:
    $ 44.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Dynamical systems can be thought of as the study of objects in motion, e.g. planets, where the motion evolves over time according to a fixed set of rules. The evolution can be structured or quite complex and even chaotic. This research project studies a family of dynamical systems that are highly structured but whose long term behavior can often be understood via a chaotic system that renormalizes the dynamics. The analysis of these problems involves dynamical, geometric, and combinatorial arguments. The project also has a large component geared towards smoothing the progression of early career mathematicians. This includes research mentoring for undergraduate and graduate students, professional mentoring for graduate students, notes to introduce first year graduate students to ergodic theory while preparing them for qualifying exams in real analysis, a problem list of topics in the area, and a collection of key arguments in ergodic theory.The goal of this project is to better understand the dynamics of interval exchange transformations, flows on translations surfaces, and Teichmueller geodesic flow. Interval exchange transformations and flows on translation surfaces are closely related objects. Interval exchange transformations arise as first return maps of flows on translation surfaces, and similarly a translation surface can be built from an interval exchange with additional suspension data. Questions of interest are generalizations of the isomorphism problem, non-unique ergodicity and its variants, the behavior of bounded sets, and the behavior of actions of matrices on the space of translation surfaces. These problems will be studied using renormalization dynamics -- Rauzy induction and Teichmueller geodesic flow -- as well as combinatorial constructions, especially in building examples with exotic properties.
动力学系统可以被认为是对运动中的物体(例如行星)的研究,其中运动根据一组固定的规则随时间演变。进化可能是结构化的,也可能非常复杂,甚至是混乱的。这项研究项目研究了一类高度结构化的动力系统,但其长期行为通常可以通过重新规格化动力学的混沌系统来理解。对这些问题的分析涉及动力学、几何和组合论证。该项目还有一个很大的组成部分,旨在为早期职业数学家的发展铺平道路。这包括本科生和研究生的研究指导,研究生的专业指导,向一年级研究生介绍遍历理论的笔记,同时为真实分析的合格考试做准备,该领域的问题清单,以及遍历理论的关键论点的集合。本项目的目标是更好地理解区间交换变换的动态,翻译表面上的流动,以及泰希穆勒测地线流动。平移曲面上的区间交换变换和流是密切相关的对象。区间交换变换作为平移面上的流动的第一返回映射而产生,类似地,可以从具有附加悬浮数据的区间交换建立平移面。感兴趣的问题是同构问题的推广,非唯一遍历性及其变体,有界集的行为,以及平移曲面空间上矩阵的作用的行为。这些问题将使用重整化动力学--劳兹诱导和泰希穆勒测地线流--以及组合结构来研究,特别是在构建具有奇异性质的例子时。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Chaika其他文献

Jonathan Chaika的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Chaika', 18)}}的其他基金

Dynamics Around Translation Surfaces
平移表面周围的动力学
  • 批准号:
    2350393
  • 财政年份:
    2024
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Standard Grant
Dynamics on Translation Surfaces and on Spaces of Translation Surfaces
平移表面和平移表面空间上的动力学
  • 批准号:
    2055354
  • 财政年份:
    2021
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Standard Grant
Conference Proposal: Wasatch Topology Conference
会议提案:Wasatch 拓扑会议
  • 批准号:
    1822255
  • 财政年份:
    2018
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Continuing Grant
Dynamics of interval exchange transformations and flows on flat surfaces
平面上区间交换变换和流动的动力学
  • 批准号:
    1300550
  • 财政年份:
    2013
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1004372
  • 财政年份:
    2010
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Fellowship Award

相似海外基金

"Forens-OMICS" on Human Remains and Biological Fluids for Age-at-Death, Post-Mortem Interval and Time Since Deposition Estimation in Forensic Contexts
关于法医背景下人体遗骸和生物体液死亡年龄、死后间隔和沉积时间估计的“Forens-OMICS”
  • 批准号:
    MR/Y019989/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Fellowship
Breaking prolonged sitting with high-intensity interval training to improve cognitive and brainhealth in older adults: A pilot feasibility trial
通过高强度间歇训练打破久坐以改善老年人的认知和大脑健康:一项试点可行性试验
  • 批准号:
    10742157
  • 财政年份:
    2023
  • 资助金额:
    $ 44.7万
  • 项目类别:
Elucidation of the health-promoting mechanism of interval exercise in mice and humans: development of methods for evaluating its effectiveness.
阐明小鼠和人类间歇运动的健康促进机制:开发评估其有效性的方法。
  • 批准号:
    23K10607
  • 财政年份:
    2023
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Designs and Theory for Interval Contractors and Reference Governors with Aerospace Applications
合作研究:间隔承包商和参考调速器与航空航天应用的设计和理论
  • 批准号:
    2308282
  • 财政年份:
    2023
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Standard Grant
Development of method for estimating post-mortem interval using cadaver microbiome analysis
开发利用尸体微生物组分析估计死后间隔的方法
  • 批准号:
    23K16375
  • 财政年份:
    2023
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Improving Cardiorespiratory Fitness and Cardiometabolic Health among Children with Physical Disabilities through Movement-to-Music Telehealth with Arm-based Sprint-Intensity Interval Training
通过运动音乐远程医疗和基于手臂的冲刺强度间歇训练,改善身体残疾儿童的心肺健康和心脏代谢健康
  • 批准号:
    10645848
  • 财政年份:
    2023
  • 资助金额:
    $ 44.7万
  • 项目类别:
Collaborative Research: Designs and Theory for Interval Contractors and Reference Governors with Aerospace Applications
合作研究:间隔承包商和参考调速器与航空航天应用的设计和理论
  • 批准号:
    2308283
  • 财政年份:
    2023
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Standard Grant
High Intensity Interval Training: Optimizing Exercise Therapy to Mitigate Cardiovascular Disease Risk Following Breast Cancer Chemotherapy
高强度间歇训练:优化运动疗法以降低乳腺癌化疗后的心血管疾病风险
  • 批准号:
    10667675
  • 财政年份:
    2023
  • 资助金额:
    $ 44.7万
  • 项目类别:
The effects of high-intensity interval training and moderate-to-vigorous intensity continuous training on cardiorespiratory fitness in patients with persistent and permanent atrial fibrillation
高强度间歇训练和中高强度持续训练对持续性、永久性房颤患者心肺健康的影响
  • 批准号:
    480708
  • 财政年份:
    2023
  • 资助金额:
    $ 44.7万
  • 项目类别:
Analysis of Alzheimer's disease studies that feature truncated or interval-censored covariates
对具有截断或区间删失协变量的阿尔茨海默病研究的分析
  • 批准号:
    10725225
  • 财政年份:
    2023
  • 资助金额:
    $ 44.7万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了