Collaborative Research: Designs and Theory for Interval Contractors and Reference Governors with Aerospace Applications
合作研究:间隔承包商和参考调速器与航空航天应用的设计和理论
基本信息
- 批准号:2308282
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will produce mathematical methods for the control of important classes of dynamical systems that are used in aerospace engineering. The controls will be modeled as forcing functions, which represent the admissible forces that can be applied to the dynamics. The focus will be on producing formulas for controls that ensure that desirable prescribed control objectives are met for dynamical systems that contain significant input or state constraints. Input constraints are restrictions on forces that can be applied to the systems, such as maximum allowable thrusts for an aerial vehicle. State constraints are restrictions on the allowable states of the systems, which can arise from obstacle avoidance requirements or the need to keep the pitch or roll of an aerial vehicle in safe ranges. The research is amenable to significant engineering applications with either incomplete information about the systems' states or surroundings, or where there are time deadlines or latencies when achieving prescribed control goals. Latencies in mathematical models are important for modeling the delayed effects of applying forces to dynamical systems. The potential applications include using aerospace engineering methods for national defense, for search and rescue, or for drones that can deliver medical supplies in developing countries that may not yet have well equipped runways. The methods will be tested in numerical simulations, using mathematical models of quadrotors and fixed wing aircraft, and then in real time in an aerospace engineering lab and outdoors using flying platforms. In addition to generating fundamental knowledge that can enhance the performance of aerospace systems in national defense or other significant domains, the project will train PhD students at the interface of aerospace engineering and mathematics. This will help increase the population of US applied mathematicians who can collaborate with engineers and who can use state-of-the-art mathematical techniques to help solve important societal problems.The project will pursue three research strategies. One strategy will develop interval contractors, which are iterative techniques for estimating solutions of uncertain dynamical systems under incomplete information about the current state of the dynamics, focusing on how uncertainty in state and input measurements affect the contraction of the intervals and deriving conditions under which the intervals contract to small enough tubes around unknown time-varying functions in finite time. This strategy will build on the investigators' preliminary results that illustrate significant improvement in tracking in aerospace models that is achievable when interval contractors are used in conjunction with state augmentation methods and convexity arguments to transform polynomial state constraints into more easily handled linear constraints. A second strategy will develop finite time extremum seeking methods, which identify extrema of uncertain functions using sampled or delayed measurements and where the identification process uses interval contractors, and which are therefore a significant departure from standard optimization methods where the objective function is assumed to be known. A third strategy will be robust reference governors, which are add-on schemes for control systems that prevent input or state violations while maintaining the performance of controls that were designed in the absence of input or state constraints. This strategy will focus on using interval contractors to ensure finite time convergence, under unknown delays in continuous and discrete time and perturbed sampled measurements that can model the effects of image processing. The project would prove theorems that provide sufficient conditions for the methods to satisfy prescribed convergence properties with a view towards findings rates of convergence, which is a significant departure from research in the engineering community that was mainly experimental. The applications will include propellant slosh mitigation, automatic safe landing, and source seeking.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将产生用于控制航空航天工程中使用的重要类别动力系统的数学方法。控制将被建模为强制功能,这代表了可接受的力量,可以施加到动态。重点将是生产公式的控制,确保所需的规定的控制目标得到满足的动态系统,包含显着的输入或状态约束。输入约束是对可以施加到系统的力的限制,例如飞行器的最大允许推力。状态约束是对系统的允许状态的限制,其可以由避障要求或将飞行器的俯仰或滚转保持在安全范围内的需要引起。该研究适合于重要的工程应用,无论是不完整的信息系统的状态或环境,或有时间期限或延迟时,实现规定的控制目标。数学模型中的时滞对于建模施加力到动力系统的延迟效应是重要的。潜在的应用包括将航空航天工程方法用于国防,搜索和救援,或用于无人机,可以在可能尚未拥有装备良好的跑道的发展中国家提供医疗用品。这些方法将在数值模拟中进行测试,使用四旋翼和固定翼飞机的数学模型,然后在航空航天工程实验室和户外使用飞行平台进行真实的时间测试。除了生成可以提高航空航天系统在国防或其他重要领域的性能的基础知识外,该项目还将培养航空航天工程和数学接口的博士生。这将有助于增加美国应用数学家的人口,他们可以与工程师合作,并可以使用最先进的数学技术来帮助解决重要的社会问题。一种策略将开发区间承包商,这是一种迭代技术,用于在动态当前状态的不完整信息下估计不确定动态系统的解,重点关注状态和输入测量的不确定性如何影响区间的收缩,并推导出区间在有限时间内围绕未知时变函数收缩到足够小的管的条件。该策略将建立在研究人员的初步结果的基础上,这些结果说明了在航空航天模型中跟踪的显着改善,当区间承包商与状态增强方法和凸性参数结合使用时,可以将多项式状态约束转换为更容易处理的线性约束。第二种策略将开发有限时间极值搜索方法,该方法使用采样或延迟测量来识别不确定函数的极值,并且其中识别过程使用区间承包商,并且因此与目标函数被假定为已知的标准优化方法显著偏离。第三种策略是鲁棒的参考调节器,它是控制系统的附加方案,可以防止输入或状态违规,同时保持在没有输入或状态约束的情况下设计的控制性能。这一战略将侧重于使用区间承包商,以确保有限的时间收敛,在连续和离散时间和扰动采样测量,可以模拟图像处理的效果未知的延迟。该项目将证明为各种方法满足规定的收敛性质提供充分条件的定理,以期发现收敛速度,这与工程界主要是实验性的研究有很大的不同。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Malisoff其他文献
Remarks on output feedback stabilization of two-species chemostat models
- DOI:
10.1016/j.automatica.2010.06.035 - 发表时间:
2010-10-01 - 期刊:
- 影响因子:
- 作者:
Frédéric Mazenc;Michael Malisoff - 通讯作者:
Michael Malisoff
Interval contractor-based reference governor for a class of uncertain nonlinear systems
一类不确定非线性系统的基于区间收缩的参考调节器
- DOI:
10.1016/j.automatica.2025.112407 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:5.900
- 作者:
Rick Schieni;Michael Malisoff;Laurent Burlion - 通讯作者:
Laurent Burlion
Bounded-from-below solutions of the Hamilton-Jacobi equation for optimal control problems with exit times: vanishing lagrangians, eikonal equations, and shape-from-shading
- DOI:
10.1007/s00030-003-1051-8 - 发表时间:
2004-02-01 - 期刊:
- 影响因子:1.200
- 作者:
Michael Malisoff - 通讯作者:
Michael Malisoff
Michael Malisoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Malisoff', 18)}}的其他基金
Collaborative Research: Designs and Theory for Event-Triggered Control with Marine Robotic Applications
合作研究:海洋机器人应用事件触发控制的设计和理论
- 批准号:
2009659 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Sequential Predictors for Partial Differential Equation and Delay Systems: Designs, Theory, and Applications
合作研究:偏微分方程和延迟系统的序贯预测器:设计、理论和应用
- 批准号:
1711299 - 财政年份:2017
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Designs and Theory of State-Constrained Nonlinear Feedback Controls for Delay and Partial Differential Equation Systems
合作研究:时滞和偏微分方程系统的状态约束非线性反馈控制的设计和理论
- 批准号:
1408295 - 财政年份:2014
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Robustness of Networked Model Predictive Control Satisfying Critical Timing Constraints
协作研究:满足关键时序约束的网络模型预测控制的鲁棒性
- 批准号:
1436774 - 财政年份:2014
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Theory, Methods, and Applications of Nonlinear Control Systems with Time Delays
时滞非线性控制系统的理论、方法和应用
- 批准号:
1102348 - 财政年份:2011
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Autonomous Control and Sensing Algorithms for Surveying the Impacts of Oil Spills on Coastal Environments
合作研究:RAPID:用于调查溢油对沿海环境影响的自主控制和传感算法
- 批准号:
1056255 - 财政年份:2010
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
MSPA-ENG: Research in Nonlinear Control Systems Theory: Lyapunov Functions, Stabilization, and Engineering Applications II
MSPA-ENG:非线性控制系统理论研究:李雅普诺夫函数、稳定性和工程应用 II
- 批准号:
0708084 - 财政年份:2007
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Research in Nonlinear Control Systems Theory: Lyapunov Functions, Stabilization, and Engineering Applications
非线性控制系统理论研究:李亚普诺夫函数、稳定性和工程应用
- 批准号:
0424011 - 财政年份:2004
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
- 批准号:
2341994 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
- 批准号:
2341995 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Understanding the Limitations of Wireless Network Security Designs Leveraging Wireless Properties: New Threats and Defenses in Practice
协作研究:SaTC:核心:小型:了解利用无线特性的无线网络安全设计的局限性:实践中的新威胁和防御
- 批准号:
2316720 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Hardware Security Insights: Analyzing Hardware Designs to Understand and Assess Security Weaknesses and Vulnerabilities
协作研究:SaTC:核心:中:硬件安全见解:分析硬件设计以了解和评估安全弱点和漏洞
- 批准号:
2247755 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Small: Expediting Continual Online Learning on Edge Platforms through Software-Hardware Co-designs
协作研究:企业社会责任:小型:通过软硬件协同设计加快边缘平台上的持续在线学习
- 批准号:
2312157 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I:SweetPea: Automating the Implementation and Documentation of Unbiased Experimental Designs
合作研究:HNDS-I:SweetPea:自动化无偏实验设计的实施和记录
- 批准号:
2318548 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I:SweetPea: Automating the Implementation and Documentation of Unbiased Experimental Designs
合作研究:HNDS-I:SweetPea:自动化无偏实验设计的实施和记录
- 批准号:
2318550 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I:SweetPea: Automating the Implementation and Documentation of Unbiased Experimental Designs
合作研究:HNDS-I:SweetPea:自动化无偏实验设计的实施和记录
- 批准号:
2318549 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Hardware Security Insights: Analyzing Hardware Designs to Understand and Assess Security Weaknesses and Vulnerabilities
协作研究:SaTC:核心:中:硬件安全见解:分析硬件设计以了解和评估安全弱点和漏洞
- 批准号:
2247756 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Collaborative Research: Designs and Theory for Interval Contractors and Reference Governors with Aerospace Applications
合作研究:间隔承包商和参考调速器与航空航天应用的设计和理论
- 批准号:
2308283 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant














{{item.name}}会员




