CAREER: Real-Time 3D Reconstruction and Manipulation for Underwater Intervention - A Career Development Plan

职业:水下干预的实时 3D 重建和操纵 - 职业发展计划

基本信息

项目摘要

Underwater robotic vehicles like AUVs (Autonomous Underwater Vehicles) and ROVs (Remotely Operated Vehicles) have occasion to interact with the environment in many tasks including deep-water science, resource extraction, and sub-sea construction, and maintenance. Crucial to these tasks is the ability to interpret the operating environment to ensure safety and effectiveness. This project proposes the development of algorithms for quickly constructing 3D models of the environment from pictures and video obtained with an underwater camera. In the short term, this means augmenting how humans control AUVs and ROVs. In the long term, the PI's career plan aims to produce systems that can safely interact with the environment without direct human control. Beyond the technical goals, this proposal lays out a plan for education and outreach to encourage, foster, and promote both engineering science and marine exploration to a broad audience.Real-time underwater 3D reconstruction is an enabling technology for many other research areas, including manipulation, navigation, obstacle avoidance, intelligent sampling, and adaptive surveying. This career development plan approaches the general vision problem by analyzing the constraints imposed by the underwater domain. The PI proposes a principled approach for online 3D reconstruction that handles both the propagation of light in water and a formulation that includes prior shape knowledge. Additionally, scene understanding is framed to allow for the segmentation and classification of underwater optical data based upon a joint model of the 3D structure and the photometric properties of the scene using a state-of-the-art dimensionality reduction approach.
水下机器人如AUV(自主水下机器人)和ROV(遥控潜水器)在深水科学、资源开采、海底建设和维护等许多任务中都有机会与环境互动。对这些任务至关重要的是能够解释操作环境,以确保安全性和有效性。该项目提出了开发算法,从水下相机获得的图片和视频中快速构建环境的3D模型。在短期内,这意味着加强人类控制AUV和ROV的方式。从长远来看,PI的职业计划旨在生产能够在没有直接人类控制的情况下与环境安全互动的系统。除了技术目标之外,这项建议还列出了一项教育和推广计划,以鼓励、培养和促进工程科学和海洋勘探向广大受众。实时水下3D重建是许多其他研究领域的一项使能技术,包括操纵、导航、避障、智能采样和自适应测量。这份职业发展计划通过分析水下领域施加的限制来解决一般的视力问题。PI为在线三维重建提出了一种原则性的方法,既处理了光在水中的传播,又提出了包括先验形状知识的公式。此外,场景理解的框架允许基于3D结构的联合模型和使用最先进的降维方法的场景的光度特性来对水下光学数据进行分割和分类。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Johnson-Roberson其他文献

Matthew Johnson-Roberson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Johnson-Roberson', 18)}}的其他基金

NRI: INT: COLLAB: Shared Autonomy for Unstructured Underwater Environments through Vision and Language
NRI:INT:COLLAB:通过视觉和语言实现非结构化水下环境的共享自治
  • 批准号:
    1830345
  • 财政年份:
    2018
  • 资助金额:
    $ 53.19万
  • 项目类别:
    Standard Grant

相似国自然基金

Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
  • 批准号:
    30600737
  • 批准年份:
    2006
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
  • 批准号:
    60608018
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    $ 53.19万
  • 项目类别:
    Continuing Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
  • 批准号:
    2338792
  • 财政年份:
    2024
  • 资助金额:
    $ 53.19万
  • 项目类别:
    Continuing Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    $ 53.19万
  • 项目类别:
    Continuing Grant
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
  • 批准号:
    2340519
  • 财政年份:
    2024
  • 资助金额:
    $ 53.19万
  • 项目类别:
    Continuing Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
  • 批准号:
    2340799
  • 财政年份:
    2024
  • 资助金额:
    $ 53.19万
  • 项目类别:
    Continuing Grant
CAREER: Real-time control of elementary catalytic steps: Controlling total vs partial electrocatalytic oxidation of alkanes and olefins
职业:实时控制基本催化步骤:控制烷烃和烯烃的全部与部分电催化氧化
  • 批准号:
    2338627
  • 财政年份:
    2024
  • 资助金额:
    $ 53.19万
  • 项目类别:
    Continuing Grant
CAREER: Frequency Agile Real-Time Reconfigurable RF Analog Co-Processor Design Leveraging Engineered Nanoparticle and 3D Printing
职业:利用工程纳米颗粒和 3D 打印进行频率捷变实时可重构射频模拟协处理器设计
  • 批准号:
    2340268
  • 财政年份:
    2024
  • 资助金额:
    $ 53.19万
  • 项目类别:
    Continuing Grant
CAREER: Foundations of Scalable and Resilient Distributed Real-Time Decision Making in Open Multi-Agent Systems
职业:开放多代理系统中可扩展和弹性分布式实时决策的基础
  • 批准号:
    2339509
  • 财政年份:
    2024
  • 资助金额:
    $ 53.19万
  • 项目类别:
    Continuing Grant
CAREER: Semantic and Goal-oriented Status Updating for Real-time Inference, Monitoring, and Decision-Making
职业:语义和目标导向的状态更新,用于实时推理、监控和决策
  • 批准号:
    2239677
  • 财政年份:
    2023
  • 资助金额:
    $ 53.19万
  • 项目类别:
    Continuing Grant
CAREER: Open-Access, Real-Time High-Throughput Metabolomics for High-Field and Benchtop NMR for Biological Inquiry
职业:用于生物研究的高场和台式 NMR 的开放获取、实时高通量代谢组学
  • 批准号:
    2237314
  • 财政年份:
    2023
  • 资助金额:
    $ 53.19万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了