CAREER: Real-time control of elementary catalytic steps: Controlling total vs partial electrocatalytic oxidation of alkanes and olefins

职业:实时控制基本催化步骤:控制烷烃和烯烃的全部与部分电催化氧化

基本信息

  • 批准号:
    2338627
  • 负责人:
  • 金额:
    $ 64.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2029-02-28
  • 项目状态:
    未结题

项目摘要

Hydrocarbons, molecules which consist of hydrogen and carbon atoms, are some of the most important chemicals to humanity. As supplied primarily by natural gas and oil, hydrocarbons provide most of our energy needs through combustion, and also serve as the source of many manufactured products, including plastics, lubricants, fabrics, and building materials, among others. Unfortunately, traditional high-temperature combustion and manufacturing processes are challenging to control, resulting in low energy efficiency, high emissions of carbon dioxide (CO2), and generation of undesired side products (the latter compounding process complexity and energy inefficiency through the need for downstream separations). The project explores a novel electrocatalytic approach to hydrocarbon utilization that operates near room temperature and controls the elementary steps involved in incorporating oxygen atoms into hydrocarbons such that combustion efficiency is greatly improved, while chemical manufacturing of oxygen-containing hydrocarbon products can be directed more effectively to desired products, resulting in lower energy consumption. Aside from the technical benefits, the project will be complemented by efforts to make the understanding of electrochemical processes more accessible to students and the general public. To this effect, the project includes an approach to make the behavior of electrochemical interfaces audible, thus employing these ‘electrochemical sounds’ as a tool to teach electrochemistry at the university and high school levels. The project is built on the observation that the origin of low efficiency and selectivity in hydrocarbon oxidation reactions derives from the vastly different conditions needed for each of the elementary steps involved in the catalytic reaction pathway. Controlled oxidation requires substrate adsorption in the correct binding mode, oxidation of intermediates to the desired product, and product desorption without inducing further reaction. Yet, conditions favoring one step often disfavor another. The project addresses this challenge by modulating the voltage applied to the electrocatalyst in sequence with the reaction steps, thereby rearranging the electrochemical interface formed between the electrocatalyst and the electrolyte. Independent control is thus achieved to sequentially enhance hydrocarbon adsorption, the oxidation of adsorbed compounds, and the desorption of desired products. The efficacy of the dynamic potential modulation approach will be examined in an alkane fuel cell application and in the sustainable synthesis of oxygenated precursor chemicals for plastics. Taken together, these efforts will open novel avenues to the efficient production of chemicals, while aiding the clean energy transition of the U.S. chemical industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
碳氢化合物,由氢和碳原子组成的分子是人类的一些最重要的化学物质。正如天然气和石油提供的主要产品一样,碳氢化合物通过组合提供了我们的大部分能源需求,还可以作为许多制成品的来源,包括塑料,润滑剂,织物和建筑材料等。不幸的是,传统的高温组合和制造过程要挑战控制,从而导致低能效率,二氧化碳(CO2)的高排放以及不希望的副产品的产生(后者的复合过程复杂性和通过下游分离的需要)。该项目探索了一种新型的电催化方法来用于烃利用,该方法在室温附近运行,并控制企业氧原子与碳氢化合物中所涉及的基本步骤,从而大大提高了组合效率,而化学生产含氧碳碳产物可以更有效地导致较低的能量产物,从而导致低能量消耗。除了技术利益外,该项目还将通过努力使对电化学流程的理解更容易被学生和公众访问。为此,该项目包括一种使电化学接口的行为可听见的方法,从而采用这些“电化学声音”作为在大学和高中级教授电化学的工具。该项目建立在这样的观察中,即烃氧化反应中低效率和选择性的起源源自催化反应途径所需的每个基本步骤所需的巨大不同条件。受控的氧化需要在正确的结合模式下底物添加吸收,中间体与所需产物的氧化以及产物解吸而没有诱导进一步的反应。但是,有利于一步的条件通常不喜欢另一个。该项目通过与反应步骤序列地调节对电催化剂的电压进行调节,从而解决了这一挑战,从而重新安排了电催化剂和电解质之间形成的电化学界面。因此,独立对照是为了依次增强碳氢化合物吸附,吸附化合物的氧化以及所需产物的解吸。动态潜在调制方法的效率将在烷烃燃料电池的应用以及可持续合成塑料的氧化前体化学物质中进行检查。综上所述,这些努力将为化学物质的有效生产提供新的途径,同时有助于美国化学工业的清洁能源过渡。该奖项反映了NSF的法定任务,并通过使用该基金会的知识分子和更广泛的影响评估审查标准,认为通过评估来获得珍贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marcel Schreier其他文献

Electrocatalytic Scission of Unactivated C(sp3)-C(sp3) Bonds through Real-Time Manipulation of Surface-Bound Intermediates.
通过实时操作表面结合中间体电催化断裂未活化的 C(sp3)-C(sp3) 键。
  • DOI:
    10.1021/jacs.3c02108
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Harshal B Bakshi;Christine Lucky;Hsiang;Marcel Schreier
  • 通讯作者:
    Marcel Schreier
The nature of ‘overexchanged’ copper and platinum on zeolites
沸石上“过度交换”铜和铂的性质
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Marcel Schreier;S. Teren;L. Belcher;J. Regalbuto;Jeffrey T. Miller
  • 通讯作者:
    Jeffrey T. Miller
Insight into the Role of Entropy in Promoting Electrochemical CO2 Reduction by Imidazolium Cations.
深入了解熵在促进咪唑阳离子电化学 CO2 还原中的作用。

Marcel Schreier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

己酸二元发酵体系中甲烷菌促进己酸生成的机制研究
  • 批准号:
    31501461
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
多维马氏体的数学建模及其高精度数值模拟方法
  • 批准号:
    11171218
  • 批准年份:
    2011
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目
体数据表达与绘制的新方法研究
  • 批准号:
    61170206
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
mRNA推断皮肤损伤时间的多因子与多因素实验研究
  • 批准号:
    81172902
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于孢子捕捉器和实时定量PCR技术的空气中小麦白粉菌的监测技术研究
  • 批准号:
    31171793
  • 批准年份:
    2011
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Continuing Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
  • 批准号:
    2338792
  • 财政年份:
    2024
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Continuing Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Continuing Grant
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
  • 批准号:
    2340519
  • 财政年份:
    2024
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Continuing Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
  • 批准号:
    2340799
  • 财政年份:
    2024
  • 资助金额:
    $ 64.94万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了