CAREER: Situated Recognition: Learning to understand our local visual environment
职业:情境识别:学习了解我们当地的视觉环境
基本信息
- 批准号:1452851
- 负责人:
- 金额:$ 51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-03-01 至 2020-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops computer vision technologies for recognizing objects in our daily lives. For recognizing visual content around us, where cameras can record multiple images over a period of time, there is an opportunity to take advantage of context that is not available for internet images. This project pursues new representations and computational strategies exploiting this context efficiently to achieve high-quality visual recognition in our environment. Balanced against the opportunity of using this context is the challenge of making recognition work in any particular environment, in the face of clutter, occlusion, non-canonical views, and idiosyncratic appearance variation. The methods developed can be a core part of developing technology to help computer vision systems scale to recognize everything in our daily world. The research leads to automated systems for better understanding and monitoring of our daily environment, improved human-computer interaction, and encourages more research in this area.This research direction is different from the majority of work in recognition that has focused on internet images collected from the web. The biases of such web-collected may lead to models that do not generalize to a particular environment. Situated recognition allows exploiting local context, including human interaction and spoken language, to build models specific to an environment and furthermore to the parts of an environment that are important to people. The project collects multiple datasets stressing multi-view imagery and long-term observation of environments while sampling a wide variety of settings. The research team develops algorithms to parse and detect objects by exploiting context, efficient re-use, and context-dependent saliency; and uses situated natural language to drive automatic learning of visual recognition models.Project Webpage: http://acberg.com
该项目开发计算机视觉技术来识别我们日常生活中的物体。 为了识别我们周围的视觉内容,相机可以在一段时间内记录多个图像,有机会利用互联网图像无法获得的上下文。 该项目追求新的表示和计算策略,有效地利用这种上下文,以在我们的环境中实现高质量的视觉识别。 与使用这种背景的机会相平衡的是,在任何特定环境中,面对混乱、遮挡、非规范视图和特殊的外观变化,识别工作面临的挑战。 所开发的方法可以成为开发技术的核心部分,以帮助计算机视觉系统扩展以识别我们日常生活中的一切。该研究带来了自动化系统,可以更好地理解和监控我们的日常环境,改善人机交互,并鼓励在这一领域进行更多研究。这一研究方向不同于大多数专注于从网络收集的互联网图像的识别工作。此类网络收集的偏差可能会导致模型无法推广到特定环境。情境识别允许利用本地上下文(包括人类交互和口语)来构建特定于环境以及对人们重要的环境部分的模型。该项目收集多个数据集,强调多视图图像和对环境的长期观察,同时对各种设置进行采样。研究团队开发了通过利用上下文、高效重用和上下文相关显着性来解析和检测对象的算法;并使用情境自然语言来驱动视觉识别模型的自动学习。项目网页:http://acberg.com
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Berg其他文献
Cuticular hydrocarbons on old museum specimens of the spiny mason wasp, Odynerus spinipes (Hymenoptera: Vespidae: Eumeninae), shed light on the distribution and on regional frequencies of distinct chemotypes
旧博物馆多刺石蜂 Odynerus spinipes(膜翅目:胡蜂科:胡蜂亚科)标本上的表皮碳氢化合物揭示了不同化学型的分布和区域频率
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1.8
- 作者:
V. Moris;Katharina Christmann;Aline Wirtgen;S. Belokobylskij;Alexander Berg;W. Liebig;Villu Soon;H. Baur;T. Schmitt;O. Niehuis - 通讯作者:
O. Niehuis
Time delay and evidence profiles forming clinical recommendations of US surgical society guidelines
美国外科学会指南形成临床推荐意见过程中的时间延迟与证据概况
- DOI:
10.1016/j.surg.2024.10.007 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:2.700
- 作者:
Alexander Berg;Nam Yong Cho;Kaustav Chattopadhyay;Sachin Narayan;Jude Alawa;David A. Spain;Jeff Choi - 通讯作者:
Jeff Choi
Miasma und Kontagium Die Lehre von der Ansteckung im Wandel der Zeiten
- DOI:
10.1007/bf01178592 - 发表时间:
1963-06-01 - 期刊:
- 影响因子:2.100
- 作者:
Alexander Berg - 通讯作者:
Alexander Berg
Erratum to: Strategies to obtain pattern fidelity in nanowire growth from large-area surfaces patterned using nanoimprint lithography
勘误:关于从使用纳米压印光刻技术图案化的大面积表面进行纳米线生长以获得图案保真度的策略
- DOI:
10.1007/s12274-016-1379-0 - 发表时间:
2017-01-27 - 期刊:
- 影响因子:9.000
- 作者:
Gaute Otnes;Magnus Heurlin;Mariusz Graczyk;Jesper Wallentin;Daniel Jacobsson;Alexander Berg;Ivan Maximov;Magnus T. Borgström - 通讯作者:
Magnus T. Borgström
Die Lehre von der Faser als Form- und Funktionselement des Organismus
- DOI:
10.1007/bf02593519 - 发表时间:
1942-11-01 - 期刊:
- 影响因子:3.100
- 作者:
Alexander Berg - 通讯作者:
Alexander Berg
Alexander Berg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Berg', 18)}}的其他基金
NRI: Collaborative Research: Task Dependent Semantic Modeling for Robot Perception
NRI:协作研究:机器人感知的任务相关语义建模
- 批准号:
1526367 - 财政年份:2015
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: FPGA Cloud Platform for Deep Learning, Applications in Computer Vision
XPS:完整:DSD:协作研究:深度学习 FPGA 云平台、计算机视觉应用
- 批准号:
1533771 - 财政年份:2015
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
相似国自然基金
基于Situated Cognition的适应性概念设计方法学研究
- 批准号:50505025
- 批准年份:2005
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Situated Anomaly Detection in an Open Environment
在开放环境中进行异常检测
- 批准号:
FT230100121 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
ARC Future Fellowships
Culturally situated immersive virtual learning and engineering design to build STEM capacity in Dine communities
具有文化背景的沉浸式虚拟学习和工程设计,旨在培养餐饮社区的 STEM 能力
- 批准号:
2241802 - 财政年份:2023
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Evaluating social interventions to reduce health inequities using an adaptive platform trial situated in Canadian primary care practice-based research networks
使用加拿大初级保健实践研究网络中的适应性平台试验评估社会干预措施,以减少健康不平等
- 批准号:
481607 - 财政年份:2023
- 资助金额:
$ 51万 - 项目类别:
Operating Grants
Conference: Socially Situated Language Processing: Special Sessions at the Human Sentence Processing 2024 Conference
会议:社会情境语言处理:2024 年人类句子处理会议特别会议
- 批准号:
2314725 - 财政年份:2023
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Collaborative Research: Broadening Inclusive Participation in Artificial Intelligence Undergraduate Education for Social Good Using A Situated Learning Approach
合作研究:利用情景学习方法扩大人工智能本科教育的包容性参与以造福社会
- 批准号:
2142594 - 财政年份:2022
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Collaborative Research: Broadening Inclusive Participation in Artificial Intelligence Undergraduate Education for Social Good Using A Situated Learning Approach
合作研究:利用情景学习方法扩大人工智能本科教育的包容性参与以造福社会
- 批准号:
2142783 - 财政年份:2022
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Constructing Situated Individual Decision Support System Based on Preference Data
基于偏好数据构建情境个体决策支持系统
- 批准号:
22K14444 - 财政年份:2022
- 资助金额:
$ 51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Broadening Inclusive Participation in Artificial Intelligence Undergraduate Education for Social Good Using A Situated Learning Approach
合作研究:利用情景学习方法扩大人工智能本科教育的包容性参与以造福社会
- 批准号:
2142439 - 财政年份:2022
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Collaborative Research: Broadening Inclusive Participation in Artificial Intelligence Undergraduate Education for Social Good Using A Situated Learning Approach
合作研究:利用情景学习方法扩大人工智能本科教育的包容性参与以造福社会
- 批准号:
2142503 - 财政年份:2022
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
CAREER: Modeling Situated Intention during Nondeterministic Pedestrian-Vehicle Interactions through Explainable Compositional Learning of Naturalistic Driving Data
职业:通过自然驾驶数据的可解释组合学习,对非确定性行人-车辆交互过程中的情境意图进行建模
- 批准号:
2145565 - 财政年份:2022
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant














{{item.name}}会员




