CAREER: Many-body Ab initio Potentials and Quantum Dynamics Methods for "First Principles" Simulations in Solution: Hydration, Vibrational Spectroscopy, & Proton Transfer/Trans
职业:解决方案中“第一原理”模拟的多体从头计算势和量子动力学方法:水合、振动光谱、
基本信息
- 批准号:1453204
- 负责人:
- 金额:$ 62.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Francesco Paesani of the University of California San Diego is supported by a CAREER award from the Chemical Theory, Models, and Computational Methods program in the Chemistry Division and the Division of Advanced Cyberinfrastructure to develop new theoretical and computational approaches for molecular-level computer simulations. Such simulations have become a powerful tool in chemistry, often providing fundamental insights into complex phenomena which are otherwise difficult to obtain. However, achieving the necessary accuracy for realistic and predictive simulations remains challenging. Paesani and his research group are meeting this challenge by combining a variety of approaches to generate very accurate models of many systems including ions in solution. The new methodology enables computer simulations of aqueous systems with unprecedented accuracy, providing information on fundamental molecular processes from ion hydration in bulk and at interfaces to proton transfer and transport in solution. The new methodology will be available to the community through its implementation in the open and free OpenMM software toolkit for molecular simulations. This "reference implementation" aims to provide the community with a completely open computational tool which may be used by other researchers interested in implementing it in their own simulation codes. In addition, this initial implementation is a starting point for future developments of unique software elements specifically designed for high-performance computing which will enable many-body simulations with unprecedented accuracy on both multicore CPU and GPU architectures.In parallel with the proposed research activities, Paesani has established an innovative education and outreach plan focusing on the development of an entry level course that introduces undergraduate students in their freshman and sophomore years to the use of computational methods in chemistry, as well as on mentoring activities specifically designed to promote study in the STEM disciplines among students from underprivileged and traditionally underrepresented groups through the development of a summer exchange program at UC-San Diego. Both the realism and the predicting power of a computer simulation strongly depend on the accuracy with which the molecular interactions and the overall system dynamics are described. Although ab initio methods can, in principle, enable the characterization of physicochemical processes without resorting to ad hoc simplifications, the associated computational cost effectively prevents the use of these methods to model realistic condensed-phase systems. Furthermore, a rigorous description of the actual molecular dynamics often requires a quantum-mechanical treatment of the nuclear motion, which further increases the computational cost associated with ab initio computer simulations. The methods developed by Paesani and coworkers seeks to overcome these limitations by combining machine-learning many-body potential energy surfaces derived entirely from highly-correlated electronic structure data with novel quantum-dynamical approaches based on path-integral molecular dynamics and centroid molecular dynamics. The efficient integration of these components pushes the boundaries of current molecular dynamics techniques and provides new opportunities for realistic simulations of condensed-phase systems in direct connection with corresponding spectroscopic measurements. Although much broader in scope, the initial application of the methodology is to modeling physicochemical processes in solution, with a specific focus on ion hydration, linear and nonlinear vibrational spectroscopy, and proton transfer/transport. The new methodology will be made available to the community through its implementation in the C++ "reference platform" of the open and free OpenMM software toolkit for molecular simulations. Specifically, implementation will consist of an independent plug-in to provide the community with a completely open implementation of these many-body potentials. This plug-in will include a complete suite of unit tests that cover all energy and force components as well as the inner functions of our many-body potentials. A number of test cases will also be made available for comparing output energies and forces obtained with OpenMM with the reference values calculated with the PI's in house implementation. To facilitate the use of the new many-body potentials, the plug-in will also offer a Python wrapper that will simplify both setting up and running many-body molecular simulations to the point where all simulation parameters will be entirely defined in an XML file. This plug-in will thus provide other researchers with a comprehensive implementation of our many-body potentials for aqueous simulations, which can be used as a reference for the implementation in other software. In addition, this reference implementation will serve as a starting point for future developments of unique software elements for the OpenMM toolkit, specifically designed for high-performance computing on both multicore CPU and GPU architectures. The development and application of the new simulation methodology will involve the training and education of undergraduate and graduate students as well as postdoctoral fellows, who will acquire a solid foundation in theoretical, physical, and computational chemistry. The interdisciplinary nature of the proposed project will provide an opportunity for students and postdocs to establish bridges and inter-connections between the fundamental laws of physical chemistry at a molecular level and the properties of condensed-phase systems. The possibility to work at the interface of different disciplines will prepare both students and postdocs for a wide range of scientific careers.
加州圣地亚哥大学的Francesco Paesani获得了化学部和高级网络基础设施部的化学理论、模型和计算方法项目的职业奖,以开发分子级计算机模拟的新理论和计算方法。 这种模拟已经成为化学中的一种强大工具,通常为复杂现象提供基本的见解,否则很难获得。然而,实现现实和预测模拟所需的准确性仍然具有挑战性。 Paesani和他的研究小组正在通过结合各种方法来应对这一挑战,以生成包括溶液中离子在内的许多系统的非常精确的模型。 新的方法使计算机模拟的水系统具有前所未有的准确性,提供信息的基本分子过程从离子水合在散装和界面质子转移和运输的解决方案。新的方法将通过在开放和免费的OpenMM软件工具包中的实施提供给社区,用于分子模拟。 这个“参考实现”的目的是为社区提供一个完全开放的计算工具,可供其他有兴趣在自己的模拟代码中实现它的研究人员使用。此外,这一初步实施是未来开发专为高性能计算设计的独特软件元素的起点,这将使多体模拟在多核CPU和GPU架构上具有前所未有的准确性。与拟议的研究活动并行,Paesani建立了一个创新的教育和推广计划,重点是开发入门级课程,介绍本科在他们的大一和大二的学生使用化学计算方法,以及指导活动,专门设计,以促进在STEM学科的学生从贫困和传统上代表性不足的群体,通过在加州大学圣地亚哥分校的夏季交流计划的发展。 计算机模拟的真实性和预测能力在很大程度上取决于分子相互作用和整个系统动力学描述的准确性。虽然从头算方法可以,在原则上,使物理化学过程的表征,而不诉诸特设的简化,相关的计算成本有效地防止使用这些方法来模拟现实的凝聚相系统。此外,对实际分子动力学的严格描述通常需要对核运动进行量子力学处理,这进一步增加了与从头算计算机模拟相关的计算成本。 Paesani及其同事开发的方法试图通过将完全来自高度相关电子结构数据的机器学习多体势能表面与基于路径积分分子动力学和质心分子动力学的新型量子动力学方法相结合来克服这些限制。这些组件的有效集成推动了当前分子动力学技术的边界,并提供了新的机会,直接与相应的光谱测量凝相系统的现实模拟。虽然范围更广,该方法的最初应用是模拟溶液中的物理化学过程,特别关注离子水合,线性和非线性振动光谱,质子转移/运输。新的方法将通过在开放和免费的OpenMM分子模拟软件工具包的C++“参考平台”中的实施向社区提供。具体来说,实现将包括一个独立的插件,为社区提供这些多体潜力的完全开放的实现。这个插件将包括一套完整的单元测试,涵盖所有的能量和力的分量,以及我们的多体势的内部功能。还将提供许多测试用例,用于将OpenMM获得的输出能量和力与PI内部实现计算的参考值进行比较。为了方便使用新的多体势,该插件还将提供一个Python包装器,该包装器将简化多体分子模拟的设置和运行,使所有模拟参数完全在XML文件中定义。因此,该插件将为其他研究人员提供我们的多体势用于水模拟的全面实施,这可以用作其他软件实施的参考。此外,此参考实现将作为OpenMM工具包独特软件元素未来开发的起点,专门为多核CPU和GPU架构上的高性能计算而设计。 新的模拟方法的开发和应用将涉及本科生和研究生以及博士后研究员的培训和教育,他们将在理论,物理和计算化学方面获得坚实的基础。该项目的跨学科性质将为学生和博士后提供一个机会,在分子水平上建立物理化学基本定律与凝聚相系统性质之间的桥梁和相互联系。在不同学科的接口工作的可能性将为学生和博士后提供广泛的科学职业生涯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francesco Paesani其他文献
Rationalizing the Effect of Mutations on the Editing Efficiency of Adenine Base Editors
- DOI:
10.1016/j.bpj.2019.11.1687 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Kartik Lakshmi Rallapalli;Francesco Paesani;Alexis Komor - 通讯作者:
Alexis Komor
Many-body potential for simulating the self-assembly of polymer-grafted nanoparticles in a polymer matrix
模拟聚合物基体中聚合物接枝纳米颗粒自组装的多体潜力
- DOI:
10.1038/s41524-023-01166-6 - 发表时间:
2023 - 期刊:
- 影响因子:9.7
- 作者:
Yilong Zhou;S. Bore;Andrea R. Tao;Francesco Paesani;Gaurav Arya - 通讯作者:
Gaurav Arya
Making Ice from Stacking-Disordered Crystallites
- DOI:
10.1016/j.chempr.2017.12.002 - 发表时间:
2017-12-14 - 期刊:
- 影响因子:
- 作者:
Francesco Paesani - 通讯作者:
Francesco Paesani
Francesco Paesani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francesco Paesani', 18)}}的其他基金
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321104 - 财政年份:2024
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Frameworks: Data-Driven Software Infrastructure for Next-Generation Molecular Simulations
框架:下一代分子模拟的数据驱动软件基础设施
- 批准号:
2311260 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Disentangling Many-Body Effects and Coupling in the Vibrational Spectra of Aqueous Clusters
解开水团簇振动谱中的多体效应和耦合
- 批准号:
2102309 - 财政年份:2021
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Data-Driven Many-Body Models for Molecular Simulations of Ions in Water: From Ionic Clusters to Concentrated Electrolyte Solutions
用于水中离子分子模拟的数据驱动多体模型:从离子簇到浓缩电解质溶液
- 批准号:
1954895 - 财政年份:2020
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Molecular Characterization of Water Oxidation in Metal-Organic Frameworks through Computer Simulations
通过计算机模拟对金属有机框架中的水氧化进行分子表征
- 批准号:
1704063 - 财政年份:2018
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
SI2-SSE: Enabling Chemical Accuracy in Computer Simulations: An Integrated Software Platform for Many-Body Molecular Dynamics
SI2-SSE:实现计算机模拟中的化学准确性:多体分子动力学集成软件平台
- 批准号:
1642336 - 财政年份:2017
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Computer Modeling of Proton Conduction in Metal-Organic Frameworks
金属有机框架中质子传导的计算机建模
- 批准号:
1305101 - 财政年份:2013
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant
Molecular simulations of water uptake and nitrogen oxides reactions on aerosol surfaces
气溶胶表面吸水和氮氧化物反应的分子模拟
- 批准号:
1111364 - 财政年份:2011
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant
CAREER: Many-Body Green's Function Framework for Materials Spectroscopy
职业:材料光谱的多体格林函数框架
- 批准号:
2337991 - 财政年份:2024
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
CAREER: Quantum Information Theory of Many-body Physics
职业:多体物理的量子信息论
- 批准号:
2337931 - 财政年份:2024
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant
CAREER: Complexity of quantum many-body systems: learnability, approximations, and entanglement
职业:量子多体系统的复杂性:可学习性、近似和纠缠
- 批准号:
2238836 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant
CAREER: Probing and Understanding Nonreciprocal and Topological Radiative Heat Transport in Many-Body Magnetized Systems
职业:探索和理解多体磁化系统中的不可逆和拓扑辐射热传输
- 批准号:
2238927 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
CAREER: New Regimes of Coherent Nonequilibrium Dynamics in Quantum Many-Body Systems
职业:量子多体系统中相干非平衡动力学的新机制
- 批准号:
2143635 - 财政年份:2022
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant
CAREER: Advancing the Many-body Band Inversion Paradigm for Correlated Quantum Materials
职业:推进相关量子材料的多体能带反演范式
- 批准号:
2144352 - 财政年份:2022
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant
CAREER: Quantum many-body physics beyond the Boltzmann paradigm: prethermalization, many-body localization, and their applications
职业:超越玻尔兹曼范式的量子多体物理:预热、多体局域化及其应用
- 批准号:
2236517 - 财政年份:2022
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant
CAREER: Universal Dynamics of Many-Body Quantum Systems Far from Equilibrium
职业:远离平衡的多体量子系统的通用动力学
- 批准号:
2142866 - 财政年份:2022
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant
CAREER: Development and Application of First-Principles Dielectric Embedding Many-Body Perturbation Theory for Heterogeneous Interfaces
职业:异质界面第一性原理电介质嵌入多体摄动理论的发展与应用
- 批准号:
2044552 - 财政年份:2021
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant