CAREER: Synthesizing Highly Efficient Hardware Accelerators for Irregular Programs: A Synergistic Approach
职业:为不规则程序合成高效硬件加速器:一种协同方法
基本信息
- 批准号:1453378
- 负责人:
- 金额:$ 45.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This CAREER research project aims to significantly improve the design productivity and quality of heterogeneous computer architectures, which extensively integrate specialized hardware accelerators to continue to provide the computing improvements essential to all aspects of our society. Achieving this goal requires the development of a new class of truly integrated design automation methodologies and tools to enable productive modeling, exploration, and generation of hardware accelerators from high-level programs, especially for the irregular programs that are commonplace in emerging application domains such as computer vision, machine learning, physical simulation, and social network analytics. The project also has a broad yet thematically focused plan for educational outreach, which aims to cultivate the next generation of engineers and scientists who can bridge the chasm between the software and hardware design paradigms. The PI will lead hands-on design sessions for underrepresented minority high school students and organize engineering seminars with engaging demonstrations for first-year undergraduates to increase their interest and participation in computer engineering. In addition, the PI will actively integrate the research outcomes into undergraduate and graduate curriculum development, and leverage industrial collaborations to effectively disseminate the research results on heterogeneous computing to a broader audience.Diminished benefits of technology scaling have led to a growing interest in heterogeneous accelerator-rich system architectures to improve performance under tight power and energy efficiency constraints. Irregular programs are gaining prominence in many important application domains; but these programs are much more difficult to parallelize on conventional data-parallel accelerators such as GPUs, as they typically exhibit less-structured data access patterns and difficult-to-predict dynamic parallelism. This project aims to develop a synergistic design automation framework where a set of novel programming abstractions, architectural templates, synthesis optimization algorithms, and hardware prototypes all play concerted roles to overcome the many challenges raised by the irregular programs. Specifically, the key idea is to automatically generate softly synthesized accelerators that are capable of decoupling data access from computation for tolerating memory latency and performing run-time optimizations for exploiting the irregular parallelism.
该职业研究项目旨在显着提高异构计算机体系结构的设计生产力和质量,该体系结构广泛集成了专用硬件加速器,以继续提供对我们社会各个方面至关重要的计算改进。实现这一目标需要开发一种新的真正集成的设计自动化方法和工具,以实现高效的建模,探索和从高级程序生成硬件加速器,特别是对于新兴应用领域常见的不规则程序,如计算机视觉,机器学习,物理仿真和社交网络分析。该项目还制定了一个广泛但主题集中的教育推广计划,旨在培养下一代工程师和科学家,他们可以弥合软件和硬件设计范式之间的鸿沟。PI将为代表性不足的少数民族高中生领导动手设计课程,并为一年级本科生组织工程研讨会,以增加他们对计算机工程的兴趣和参与。此外,PI将积极将研究成果整合到本科和研究生课程开发中,并利用行业合作有效地向更广泛的受众传播异构计算的研究成果。技术扩展的好处越来越少,导致人们对异构加速器丰富的系统架构越来越感兴趣,以提高在严格的功耗和能源效率限制下的性能。不规则程序在许多重要的应用领域越来越突出;但这些程序在传统的数据并行加速器(如GPU)上并行化要困难得多,因为它们通常表现出结构化较少的数据访问模式和难以预测的动态并行性。该项目旨在开发一个协同设计自动化框架,其中一组新颖的编程抽象,架构模板,合成优化算法和硬件原型都发挥协调一致的作用,以克服不规则程序所带来的许多挑战。具体而言,关键思想是自动生成软合成加速器,能够将数据访问与计算解耦,以容忍内存延迟,并执行运行时优化,以利用不规则的并行性。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software Programmable FPGAs
- DOI:10.1145/3174243.3174255
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:Yuan Zhou;Udit Gupta;Steve Dai;Ritchie Zhao;Nitish Kumar Srivastava;Hanchen Jin;Joseph Featherston;Yi-Hsiang Lai;Gai Liu;Gustavo Angarita Velasquez;Wenping Wang;Zhiru Zhang
- 通讯作者:Yuan Zhou;Udit Gupta;Steve Dai;Ritchie Zhao;Nitish Kumar Srivastava;Hanchen Jin;Joseph Featherston;Yi-Hsiang Lai;Gai Liu;Gustavo Angarita Velasquez;Wenping Wang;Zhiru Zhang
Tensaurus: A Versatile Accelerator for Mixed Sparse-Dense Tensor Computations
- DOI:10.1109/hpca47549.2020.00062
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Nitish Srivastava;Hanchen Jin;Shaden Smith;Hongbo Rong;D. Albonesi;Zhiru Zhang
- 通讯作者:Nitish Srivastava;Hanchen Jin;Shaden Smith;Hongbo Rong;D. Albonesi;Zhiru Zhang
A Scalable Approach to Exact Resource-Constrained Scheduling Based on a Joint SDC and SAT Formulation
- DOI:10.1145/3174243.3174268
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:Steve Dai;Gai Liu;Zhiru Zhang
- 通讯作者:Steve Dai;Gai Liu;Zhiru Zhang
Improving Scalability of Exact Modulo Scheduling with Specialized Conflict-Driven Learning
通过专门的冲突驱动学习提高精确模调度的可扩展性
- DOI:10.1145/3316781.3317842
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Dai, Steve;Zhang, Zhiru
- 通讯作者:Zhang, Zhiru
GraphLily: Accelerating Graph Linear Algebra on HBM-Equipped FPGAs
- DOI:10.1109/iccad51958.2021.9643582
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Yuwei Hu;Yixiao Du;Ecenur Ustun;Zhiru Zhang
- 通讯作者:Yuwei Hu;Yixiao Du;Ecenur Ustun;Zhiru Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhiru Zhang其他文献
Architecture and compilation for data bandwidth improvement in configurable embedded processors
可配置嵌入式处理器中数据带宽改进的架构和编译
- DOI:
10.5555/1129601.1129639 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
J. Cong;Guoling Han;Zhiru Zhang - 通讯作者:
Zhiru Zhang
Behavioral synthesis with activating unused flip-flops for reducing glitch power in FPGA
通过激活未使用的触发器来降低 FPGA 中的毛刺功率的行为综合
- DOI:
10.1109/aspdac.2008.4483919 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
C. Hsieh;J. Cong;Zhiru Zhang;Shih - 通讯作者:
Shih
OverQ: Opportunistic Outlier Quantization for Neural Network Accelerators
OverQ:神经网络加速器的机会离群值量化
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Ritchie Zhao;Jordan Dotzel;Zhanqiu Hu;Preslav Ivanov;Christopher De Sa;Zhiru Zhang - 通讯作者:
Zhiru Zhang
Experiences Using the RISC-V Ecosystem to Design an Accelerator-Centric SoC in TSMC 16nm
使用 RISC-V 生态系统在 TSMC 16nm 中设计以加速器为中心的 SoC 的经验
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
T. Ajayi;Khalid Al;Aporva Amarnath;Steve Dai;S. Davidson;Paul Gao;Gai Liu;Anuj Rao;A. Rovinski;Ning;Christopher Torng;Luis Vega;Bandhav Veluri;Shaolin Xie;Chun Zhao;Ritchie Zhao;C. Batten;R. Dreslinski;Rajesh K. Gupta;M. Taylor;Zhiru Zhang - 通讯作者:
Zhiru Zhang
Formal Verification of Source-to-Source Transformations for HLS
HLS 源到源转换的形式验证
- DOI:
10.1145/3626202.3637563 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
L. Pouchet;Emily Tucker;Niansong Zhang;Hongzheng Chen;Debjit Pal;Gabriel Rodríguez;Zhiru Zhang - 通讯作者:
Zhiru Zhang
Zhiru Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhiru Zhang', 18)}}的其他基金
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 45.3万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
- 批准号:
2212371 - 财政年份:2022
- 资助金额:
$ 45.3万 - 项目类别:
Continuing Grant
Collaborative Research: FMitF: Track I: DeepSmith: Scheduling with Quality Guarantees for Efficient DNN Model Execution
合作研究:FMitF:第一轨:DeepSmith:为高效 DNN 模型执行提供质量保证的调度
- 批准号:
2019306 - 财政年份:2020
- 资助金额:
$ 45.3万 - 项目类别:
Standard Grant
SHF: Small: Architectural Synthesis for Programmable Accelerators
SHF:小型:可编程加速器的架构综合
- 批准号:
1909661 - 财政年份:2019
- 资助金额:
$ 45.3万 - 项目类别:
Standard Grant
CAPA: Collaborative Research: A Multi-Paradigm Programming Infrastructure for Heterogeneous Architectures
CAPA:协作研究:异构架构的多范式编程基础设施
- 批准号:
1723715 - 财政年份:2017
- 资助金额:
$ 45.3万 - 项目类别:
Standard Grant
STARSS: Small: Automatic Synthesis of Verifiably Secure Hardware Accelerators
STARSS:小型:自动合成可验证安全的硬件加速器
- 批准号:
1618275 - 财政年份:2016
- 资助金额:
$ 45.3万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Understanding the impacts of an ongoing megadrought: Synthesizing the role of soil moisture in driving ecosystem fluxes from site to regional scales
合作研究:了解正在进行的特大干旱的影响:综合土壤湿度在驱动生态系统通量从场地到区域尺度方面的作用
- 批准号:
2331163 - 财政年份:2024
- 资助金额:
$ 45.3万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the impacts of an ongoing megadrought: Synthesizing the role of soil moisture in driving ecosystem fluxes from site to regional scales
合作研究:了解正在进行的特大干旱的影响:综合土壤湿度在驱动生态系统通量从场地到区域尺度方面的作用
- 批准号:
2331162 - 财政年份:2024
- 资助金额:
$ 45.3万 - 项目类别:
Standard Grant
Unlocking New Chemistries in Extant Enzymes for Synthesizing Bioactive Molecules
解锁现有酶中用于合成生物活性分子的新化学成分
- 批准号:
10784165 - 财政年份:2023
- 资助金额:
$ 45.3万 - 项目类别:
Conference: CAS Climate: Synthesizing and assessing wholistic urban climate solutions in Texas
会议:CAS 气候:综合和评估德克萨斯州的整体城市气候解决方案
- 批准号:
2232533 - 财政年份:2023
- 资助金额:
$ 45.3万 - 项目类别:
Standard Grant
Synthesizing hydrologic process knowledge to determine global drivers of dominant processes
综合水文过程知识以确定主导过程的全球驱动因素
- 批准号:
2322510 - 财政年份:2023
- 资助金额:
$ 45.3万 - 项目类别:
Standard Grant
Innovation of synthesizing alpha-oxidized peptide enabled by Lossen rearrangement
通过 Lossen 重排实现 α-氧化肽合成的创新
- 批准号:
23K18187 - 财政年份:2023
- 资助金额:
$ 45.3万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
FMitF: Track I: Synthesizing Semantic Checkers for Runtime Verification of Production Distributed Systems
FMITF:第一轨:综合语义检查器以进行生产分布式系统的运行时验证
- 批准号:
2318937 - 财政年份:2023
- 资助金额:
$ 45.3万 - 项目类别:
Standard Grant
Synthesizing immunoinformatics and genetic epidemiology to identify signatures of natural functional immunity to malaria parasites
综合免疫信息学和遗传流行病学,以确定对疟疾寄生虫的天然功能免疫特征
- 批准号:
10642330 - 财政年份:2023
- 资助金额:
$ 45.3万 - 项目类别:
Collaborative Research: FMitF: Track I: Automating and Synthesizing Parallel Zero-Knowledge Protocols
合作研究:FMitF:第一轨:自动化和综合并行零知识协议
- 批准号:
2318975 - 财政年份:2023
- 资助金额:
$ 45.3万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Automating and Synthesizing Parallel Zero-Knowledge Protocols
合作研究:FMitF:第一轨:自动化和综合并行零知识协议
- 批准号:
2318974 - 财政年份:2023
- 资助金额:
$ 45.3万 - 项目类别:
Standard Grant