CAREER: Novel Green's function methods for predicting experimentally relevant quantities for solids and molecules

职业:Novel Green 函数方法用于预测固体和分子的实验相关量

基本信息

项目摘要

Dominika Zgid, of the University of Michigan, is supported by an award from the Chemical Theory, Models and Computational Methods program in the Chemistry Division to develop new computational tools to study large molecules and solids in which the correlated motion of electrons is very important. In modern science and technology, materials chemistry plays an big role in the production of advanced optoelectronic materials, semiconductors and superconductors, solar cell and battery materials. To enable the discovery of new materials and to answer experimental questions, theory has to predict experimentally relevant, measurable quantities. In the last fifty years, the majority of quantum chemistry research was focused on the development of methodological advances for molecular systems. Currently molecular problems can be described very accurately. However, for large strongly correlated molecules and solids, quantum chemistry still lacks computational tools that describe electronic correlation accurately in a systematically improvable manner and deliver experimentally useful predictions. The development of novel ab-initio theoretical methods that are at the interface of quantum chemistry and condensed matter physics and are capable of delivering useful experimental predictions for solids is the major aim of this research. This interdisciplinary project involves training and mentoring of graduate students and postdocs by allowing them to understand their research in the broadest possible sense. The research prepares them for a wide range of careers. Dr. Zgid is also actively engaged in public outreach for minorities in Science, Technology, Education and Mathematics (STEM) by organizing workshops for middle school girls. The Green's function language provides a natural link to experiment, since spectra can be readily calculated without the cumbersome excited state formalism present in wave function or density theories. Green's function methods are controlled, reliable, and systematically improvable and may easily be generalized by employing embedding methods to work for solids or large molecules. In order to calculate excitation spectra, this project implements the Bethe-Salpeter equation with a second order Green's function method and self-energy embedding approaches. The formalism is calibrated on small molecules and subsequently extended to solids by using embedding methods. Since the realism and predictive power of quantum mechanical simulations depend on the accuracy of modelling all electrons, significant attention is given to the investigation of effective Hamiltonian approaches that aim to make Green's function embedding methods quantitative for realistic molecular and crystalline systems. Finally, since the Green's function is a large object that can be calculated in parallel, the investigation focuses on efficient ways of expressing Green's functions in computer implementations. A major outcome of the project is software containing efficient, reliable and systematically improvable Green's function embedding methods for solids that is released to the public. Additionally, Dr. Zgid's research group is preparing a series of lecture notes for graduate students explaining Green's functions in order to reduce the language barrier frequently experienced by quantum chemists when working with the Green's function formalism. The proposed interdisciplinary research involves training and mentoring of graduate students and postdocs allowing them to understand their research in the broadest possible sense and prepares them for wide range of careers. Additionally, Dr. Zgid also takes part in the "Science for tomorrow" program for middle school students from underserved communities in Michigan.
密歇根大学的Dominika Zgid得到了化学理论,模型和计算方法计划的奖励,用于开发新的计算工具,以研究电子相关运动的大分子和固体,其中电子非常重要。 在现代科学和技术中,材料化学在高级光电材料,半导体和超导体,太阳能电池和电池材料的生产中起着重要作用。为了使发现新材料并回答实验问题,理论必须预测实验相关的可测量数量。在过去的五十年中,大多数量子化学研究都集中在分子系统方法学进步的发展上。 目前可以非常准确地描述分子问题。但是,对于大型强度相关的分子和固体,量子化学仍然缺乏计算工具,这些工具以系统改进的方式准确地描述了电子相关性,并提供了实验有用的预测。这项研究的主要目的是在量子化学和凝结物理学界面上的新型AB-Initio理论方法的开发,并能够为固体提供有用的实验预测。这个跨学科的项目涉及研究生和博士后的培训和指导,允许他们以最广泛的可能意义了解自己的研究。 这项研究为他们的职业做好了准备。 Zgid博士还通过组织中学女生的研讨会来积极地为科学,技术,教育和数学(STEM)的少数民族提供公共宣传。 绿色的功能语言提供了与实验的自然联系,因为可以轻松地计算光谱,而无需在波函数或密度理论中存在笨拙的激发状态形式。 Green的功能方法是控制,可靠和系统地改进的,并且可以通过使用嵌入方法来轻松概括用于固体或大分子的工作。为了计算激发光谱,该项目使用二阶Green的函数方法和自我能量嵌入方法实现了伯特 - 钙板方程。形式主义在小分子上进行校准,然后使用嵌入方法扩展到固体。 由于量子机械模拟的现实主义和预测能力取决于对所有电子建模的​​准确性,因此对有效的哈密顿方法的研究非常关注,旨在使Green的功能嵌入方法定量用于现实分子和结晶系统。最后,由于绿色的函数是一个可以并行计算的大对象,因此调查着重于表达绿色在计算机实现中的功能的有效方式。 该项目的一个主要结果是软件,其中包含有效,可靠和系统地改进的Green功能嵌入方法,以释放给公众的固体。此外,Zgid博士的研究小组正在为研究生准备一系列讲座,以解释格林的功能,以减少量子化学家在使用Green功能形式主义时经常经历的语言障碍。拟议的跨学科研究涉及对研究生和博士后的培训和指导,使他们能够以最广泛的可能意义理解他们的研究,并为广泛的职业做好准备。此外,Zgid博士还参加了密歇根州服务不足社区的中学学生的“明天科学”计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dominika Zgid其他文献

Green/WeakCoupling: Implementation of fully self-consistent finite-temperature many-body perturbation theory for molecules and solids
  • DOI:
    10.1016/j.cpc.2024.109380
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sergei Iskakov;Chia-Nan Yeh;Pavel Pokhilko;Yang Yu;Lei Zhang;Gaurav Harsha;Vibin Abraham;Ming Wen;Munkhorgil Wang;Jacob Adamski;Tianran Chen;Emanuel Gull;Dominika Zgid
  • 通讯作者:
    Dominika Zgid

Dominika Zgid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dominika Zgid', 18)}}的其他基金

Collaborative Research: Practical Strategies for Implementing Quantum Chemistry on Near-Term Quantum Computers
合作研究:在近期量子计算机上实施量子化学的实用策略
  • 批准号:
    2154152
  • 财政年份:
    2022
  • 资助金额:
    $ 63.64万
  • 项目类别:
    Standard Grant
QLC: EAGER: Collaborative Research: New Design for Quantum Chemistry Calculations on Emerging Quantum Computers
QLC:EAGER:协作研究:新兴量子计算机上量子化学计算的新设计
  • 批准号:
    1836530
  • 财政年份:
    2018
  • 资助金额:
    $ 63.64万
  • 项目类别:
    Standard Grant

相似国自然基金

novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
    32171163
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目

相似海外基金

A Phase II Randomized Placebo Controlled Trial of Epigallocatechin-3-Gallate (EGCG) on Physical Frailty and Tumor Necrosis Factor-alpha and Associated Immune Markers in Older Cancer Survivors
表没食子儿茶素-3-没食子酸酯 (EGCG) 对老年癌症幸存者身体虚弱和肿瘤坏死因子-α 及相关免疫标志物的 II 期随机安慰剂对照试验
  • 批准号:
    10570438
  • 财政年份:
    2023
  • 资助金额:
    $ 63.64万
  • 项目类别:
The 3E Study: Economic and Educational Contributions to Emerging Adult Cardiometabolic Health
3E 研究:经济和教育对新兴成人心脏代谢健康的贡献
  • 批准号:
    10579477
  • 财政年份:
    2023
  • 资助金额:
    $ 63.64万
  • 项目类别:
Climate & Health Actionable Research and Translation Center
气候
  • 批准号:
    10835460
  • 财政年份:
    2023
  • 资助金额:
    $ 63.64万
  • 项目类别:
A versatile lens architecture to shape visible light
用于塑造可见光的多功能镜头架构
  • 批准号:
    10652885
  • 财政年份:
    2023
  • 资助金额:
    $ 63.64万
  • 项目类别:
Dissecting Ventral Pallidal Subcircuit Contributions to Drug Seeking in Addiction
剖析腹侧苍白球亚电路对成瘾药物寻求的贡献
  • 批准号:
    10875076
  • 财政年份:
    2023
  • 资助金额:
    $ 63.64万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了