CAREER: Optimization and Sampling in Stochastic Simulation

职业:随机模拟中的优化和采样

基本信息

  • 批准号:
    1453934
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-02-01 至 2021-01-31
  • 项目状态:
    已结题

项目摘要

The objective of this Faculty Early Career Development (CAREER) Program project is to develop new methods for optimizing and predicting performance of complex systems that are described by stochastic simulation models. Such systems arise in various areas such as finance, engineering design, systems biology, and manufacturing, and are often characterized by complexities, nonlinearities, and uncertainties in their dynamics. The major challenges in the optimization and prediction of the system performance are the expensive evaluation of system models, lack of structure in the performance measure, huge search space, and the need to address the balance between efficiency and accuracy. This research aims to make strides towards these challenges by developing new theory and methodologies. The proposed methods will be applied to modeling of a class of biological systems from experiment data and studying modes of behaviors of these systems, helping to reveal functional mechanisms and design principles of biological systems. This project also supports the PI's educational objective to integrate research with course development and in-classroom teaching, engage more females and underrepresented minorities in engineering, and expose high-school students and middle-school girls to the field of industrial engineering and operations research.If successful, this research will provide a set of new algorithms that possess both superior practical performance and rigorous convergence guarantees for the following two problems: (i) simulation optimization; and (ii) characterization of the response space of a system model. For simulation optimization, an algorithmic framework will be developed by integrating the central idea of model-based methods from deterministic nonlinear optimization with classical gradient-based search in a seamless way. To efficiently explore the response space, a new approach is proposed to sample from the response space and the parameter space iteratively, which takes advantage of the simple structure of the parameter space to circumvent the nonlinearity of the model while using the information on the response space to expedite the search in the parameter space.
这个教师早期职业发展(CAREER)计划项目的目标是开发新的方法,用于优化和预测由随机模拟模型描述的复杂系统的性能。这样的系统出现在各种领域,如金融,工程设计,系统生物学和制造业,并往往具有复杂性,非线性和不确定性的动态。系统性能的优化和预测的主要挑战是昂贵的系统模型的评估,缺乏结构的性能测量,巨大的搜索空间,并需要解决效率和准确性之间的平衡。本研究旨在通过开发新的理论和方法来应对这些挑战。所提出的方法将用于从实验数据中建立一类生物系统的模型,研究这些系统的行为模式,有助于揭示生物系统的功能机制和设计原则。该项目还支持PI的教育目标,将研究与课程开发和课堂教学相结合,让更多女性和代表性不足的少数民族参与工程,并让高中生和初中女生接触工业工程和运筹学领域。本研究将提供一套新的算法,具有上级的实际性能和严格的收敛保证,为以下两个问题:(i)仿真优化;以及(ii)系统模型的响应空间的表征。对于模拟优化,将通过无缝地将确定性非线性优化的基于模型的方法的中心思想与经典的基于梯度的搜索相结合来开发算法框架。为了有效地探索响应空间,提出了一种新的方法,即在响应空间和参数空间中迭代采样,利用参数空间结构简单的优点来规避模型的非线性,同时利用响应空间的信息来加快参数空间的搜索。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Diffusion Approximation Theory of Momentum Stochastic Gradient Descent in Nonconvex Optimization
非凸优化中动量随机梯度下降的扩散逼近理论
  • DOI:
    10.1287/stsy.2021.0083
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu, Tianyi;Chen, Zhehui;Zhou, Enlu;Zhao, Tuo
  • 通讯作者:
    Zhao, Tuo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Enlu Zhou其他文献

Integrated Task and Motion Planning for Process-aware Source Seeking
用于过程感知源搜索的集成任务和运动规划
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingke Li;Mengxue Hou;Enlu Zhou;Fumin Zhang
  • 通讯作者:
    Fumin Zhang
Robust ranking and selection with optimal computing budget allocation
具有最佳计算预算分配的稳健排名和选择
  • DOI:
    10.1016/j.automatica.2017.03.019
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Siyang Gao;Hui Xiao;Enlu Zhou;Weiwei Chen
  • 通讯作者:
    Weiwei Chen
Ranking and selection under input uncertainty: A budget allocation formulation
输入不确定性下的排名和选择:预算分配公式
Toward Deeper Understanding of Nonconvex Stochastic Optimization with Momentum using Diffusion Approximations
使用扩散近似更深入地理解带有动量的非凸随机优化
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianyi Liu;Zhehui Chen;Enlu Zhou;T. Zhao
  • 通讯作者:
    T. Zhao
Pricing American options under partial observation of stochastic volatility
部分观察随机波动性下的美式期权定价

Enlu Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Enlu Zhou', 18)}}的其他基金

Addressing Input Model Uncertainty in Stochastic Simulation: From Quantification to Optimization
解决随机仿真中的输入模型不确定性:从量化到优化
  • 批准号:
    2053489
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: A New Paradigm for Simulation Optimization: Marriage between Expectation-Maximization and Model-Based Optimization
协作研究:仿真优化的新范式:期望最大化与基于模型的优化的结合
  • 批准号:
    1413790
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: A New Paradigm for Simulation Optimization: Marriage between Expectation-Maximization and Model-Based Optimization
协作研究:仿真优化的新范式:期望最大化与基于模型的优化的结合
  • 批准号:
    1130273
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: AF: Small: Sampling and Optimization under Global Constraints
合作研究:AF:小型:全局约束下的采样和优化
  • 批准号:
    2309708
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Wasserstein Optimization in Data Science: Recovery and Sampling
数据科学中的 Wasserstein 优化:恢复和采样
  • 批准号:
    2305315
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Sparse Sampling and Reconstruction for Rendering Through Per-Scene Optimization
职业:通过每场景优化进行渲染的稀疏采样和重建
  • 批准号:
    2238193
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: Sampling and Optimization under Global Constraints
合作研究:AF:小型:全局约束下的采样和优化
  • 批准号:
    2309707
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CRII: AF: Optimization and sampling algorithms with provable generalization and runtime guarantees, with applications to deep learning
CRII:AF:具有可证明的泛化性和运行时保证的优化和采样算法,以及深度学习的应用
  • 批准号:
    2104528
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
New Approaches to Questions in Sampling, Counting, and Optimization
解决采样、计数和优化问题的新方法
  • 批准号:
    2151283
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Optimization of Sampling Design For Predictive Digital Soil Mapping: Reducing Uncertainty, Improving Predictions and Gaining Efficiencies in Sampling Programs
预测数字土壤测绘的采样设计优化:减少不确定性、改进预测并提高采样计划的效率
  • 批准号:
    535671-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
New Approaches to Questions in Sampling, Counting, and Optimization
解决采样、计数和优化问题的新方法
  • 批准号:
    2055022
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Soil sampling optimization for complex topography in mountainous, upland and hilly area of Japan
日本山地、丘陵地区复杂地形土壤采样优化
  • 批准号:
    20K06155
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A new generation of stochastic algorithms for sampling and optimization
新一代采样和优化随机算法
  • 批准号:
    2444756
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了