CAREER: Tailored metal-oxide-based heterogeneous nanointerfaces for robust electro-catalyst formation
职业:定制基于金属氧化物的异质纳米界面,用于稳定的电催化剂形成
基本信息
- 批准号:1454230
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1454230Dinu, Zoica CeraselaThis research is focused on identifying technologies capable of increasing the energy portfolio while reducing the footprint on the environment. Through experimental assessment and advanced design and characterization methods, the proposed research will hopefully lead to the next generation of robust visible-light-responsive hetero-structures capable of utilizing solar light for efficient photocatalysis and energy generation. Highly desired is the development of photocatalyst materials that effectively utilize visible light to form resourceful photo-electro-systems. However, light-absorbance efficiency, high corrosion-resistance properties, as well as low energy levels that do not match material reduction/oxidation half-reactions in dry conditions remain contemporary challenges in designing and manufacturing the next generation of proficient photocatalysts. The goal of this project is to establish an integrated research platform for the design of robust three-dimensional arrays of visible-absorbing photocatalyst heterointerfaces that have optimum electrochemical capability, increased photosentivity, enhanced power conversion efficiency, selectivity, stability and prolonged shelf-life. The proposed education plan contributes to the research project, and aims to educate and inspire the participants to appreciate the power of catalysis and catalysis-based science and engineering. Through implementation of comprehensive instructional modules in "Photo-Electro-chemical Catalysis Science and Applications" and by using virtual laboratory demonstrations, the PI will reach the under-representative population in her community, expand its scientific literacy, and create opportunities for the next generation workforce to understand the challenges associated with energy-related technologies development and implementation.The specific objectives consist of: (1) using combinatorial approaches relying on tailoring material (metal-oxide/graphene hybrids) physicochemical properties and laser-based direct writing to design scalable hetero-interfaces, (2) elucidating the fundamental mechanisms that dictate the structure-photon absorption efficiency, photocatalytic activity and hetero-structure conversion efficiency, and (3) monitoring hetero-structure's resistance to corrosion, all in situ and in real-time. One of the fundamental technological barriers in photo-electro-chemical catalysis science is finding efficient light-absorbing catalysts that have controlled conductor bands and reduced recombination of photo-generated electron-hole pairs, to further allow for studying how their doping could lead to increased photon absorption efficiency, improved photocatalytic activity, and resistance to corrosion in liquid environments. The results generated from this research are expected to fill this critical knowledge gap. The research should unravel the crosstalk between material properties and hybrid interface reactions and help identify the key factors responsible for the enhanced conversion efficiency and selectivity in user-scalable three-dimensional photosystems. Lastly, by offering fundamental/mechanistic information on the response of the photocatalysts in relation to materials physical and chemical properties and by optimizing structure-function reactivity, the research is expected to improve the "benefit-to-risk" ratio and allow systematic design and integration of tailored hetero-interfaces for efficient energy generation.
1454230 Dinu,Zoica Cerasella这项研究的重点是确定能够在增加能源组合的同时减少对环境的足迹的技术。通过实验评估和先进的设计和表征方法,拟议的研究将有望导致下一代强大的可见光响应型异质结构,能够利用太阳光进行高效的光催化和能源产生。开发能够有效利用可见光形成资源丰富的光电系统的光催化剂材料是人们非常期待的。然而,光吸收效率、高耐腐蚀性以及与干燥条件下的材料还原/氧化半反应不匹配的低能级仍然是设计和制造下一代熟练光催化剂的当代挑战。本项目的目标是建立一个综合研究平台,用于设计具有最佳电化学性能、提高光敏性、增强功率转换效率、选择性、稳定性和延长货架期的可见吸收光催化剂异质界面的坚固的三维阵列。拟议的教育计划为研究项目做出贡献,旨在教育和激励参与者认识到催化和以催化为基础的科学和工程的力量。通过实施《光电催化科学与应用》中的综合教学模块和使用虚拟实验室演示,PI将接触到她所在社区中代表性不足的人群,扩大其科学素养,并为下一代劳动力创造机会,了解与能源相关的技术开发和实施所面临的挑战。具体目标包括:(1)使用组合方法,依赖于定制材料(金属氧化物/石墨烯杂化材料)的物理化学性质和基于激光的直接写入来设计可扩展的异质界面,(2)阐明决定结构-光子吸收效率、光催化活性和异质结构转化效率的基本机制,(3)对异质结构的耐腐蚀性进行实时监测。光电化学催化科学中的一个基本技术障碍是寻找高效的光吸收催化剂,这些催化剂控制了导电带,减少了光生电子-空穴对的复合,以便进一步研究它们的掺杂如何提高光子吸收效率,改善光催化活性,以及在液体环境中的耐腐蚀性。这项研究产生的结果有望填补这一关键的知识空白。这项研究将揭开材料特性和混合界面反应之间的串扰,并有助于确定在用户可伸缩的三维光系统中提高转换效率和选择性的关键因素。最后,通过提供与材料物理和化学性质有关的光催化剂响应的基本/机理信息,并通过优化结构-功能反应性,这项研究有望提高“效益/风险”比,并允许系统地设计和集成定制的异质界面,以有效地产生能源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zoica Cerasela Dinu其他文献
Zoica Cerasela Dinu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zoica Cerasela Dinu', 18)}}的其他基金
Nanomanufacturing of Single Molecule Patterns Using a Microtubule Pen
使用微管笔进行单分子图案的纳米制造
- 批准号:
1300757 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Large Scale Microtubule-Based Nanomanufacturing of Single Kinesin Patterns with Ultrahigh Resolution
EAGER/合作研究:基于微管的超高分辨率单一驱动蛋白模式的大规模纳米制造
- 批准号:
1049150 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
User-controlled Biocatalysis Induces Self-decontamination of Enzyme-based Composites Challenged with Simulant of B. anthracis
用户控制的生物催化诱导受到炭疽芽孢杆菌模拟物挑战的酶基复合材料的自净化
- 批准号:
1033266 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
Tailored Metal Nanostructures: Beyond Plasmon Excitation
定制金属纳米结构:超越等离子激元激发
- 批准号:
RGPIN-2016-05070 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Tailored Metal Nanostructures: Beyond Plasmon Excitation
定制金属纳米结构:超越等离子激元激发
- 批准号:
RGPIN-2016-05070 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Tailored Metal Nanostructures: Beyond Plasmon Excitation
定制金属纳米结构:超越等离子激元激发
- 批准号:
RGPIN-2016-05070 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Tailored Metal Nanostructures: Beyond Plasmon Excitation
定制金属纳米结构:超越等离子激元激发
- 批准号:
RGPIN-2016-05070 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Metal Nanoparticle - MOF Templates; Tailored Routes to Controlled Nanocomposites for Catalysis
金属纳米粒子-MOF模板;
- 批准号:
EP/R011710/1 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Tailored Metal Nanostructures: Beyond Plasmon Excitation
定制金属纳米结构:超越等离子激元激发
- 批准号:
RGPIN-2016-05070 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Tailored Metal Nanostructures: Beyond Plasmon Excitation
定制金属纳米结构:超越等离子激元激发
- 批准号:
RGPIN-2016-05070 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Tailored nanocomposites through the controlled reduction of metal nanoparticle-MOF templates.
通过金属纳米颗粒-MOF 模板的受控还原来定制纳米复合材料。
- 批准号:
1941437 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Studentship
Tailored Metal Nanostructures: Beyond Plasmon Excitation
定制金属纳米结构:超越等离子激元激发
- 批准号:
RGPIN-2016-05070 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Determined adjustment of tailored properties by using the In situ Hybridization of the manufacturing of thermoplast-based tailored fiber metal laminates
通过使用原位杂交制造基于热塑性塑料的定制纤维金属层压板来确定调整定制性能
- 批准号:
269244876 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Research Grants