CAREER: Periodic Orbits of Hamiltonian Diffeomorphisms and Reeb Flows

职业:哈密顿微分同胚和 Reeb 流的周期轨道

基本信息

项目摘要

Hamiltonian systems constitute a broad class of mechanical systems where energy dissipation can be neglected. For example, the planetary motion in celestial mechanics, the flow of an incompressible ideal fluid, and the motion of a charged particle in an electro-magnetic field are usually treated as Hamiltonian dynamical systems. One of the most important questions concerning the dynamics of such systems and connected to many other branches of mathematics and physics is the existence of periodic orbits. Corresponding to cyclic motion, this is the simplest dynamical phenomenon after equilibrium, and an investigation of periodic orbits of a system is crucial in understanding its global behavior. To give but a few applications, the knowledge of periodic orbits is crucial in astronomy, particle accelerators, and fluid dynamics or can be used to understand stability of solutions for large times. Hamiltonian systems tend to have numerous periodic orbits, but proving the existence of even one closed orbit often requires advanced and powerful mathematical tools. This research project aims at establishing the existence of infinitely many periodic orbits for a broad class of Hamiltonian systems and analyzing the systems that fall outside this class, and the work will advance our understanding of the dynamics of conservative systems and result in the development of new powerful techniques applicable to other questions. Many of the systems considered in the proposal (e.g., magnetic flows) are of interest in physics and engineering, and some of the projects are expected to have applications in mathematical physics, geometric mechanics, and other areas.The research program focuses on the question of the existence of infinitely many periodic orbits for Hamiltonian dynamical systems in a variety of settings and on new methods to investigate this question that are currently being developed by the PI. The research comprises several interconnected projects addressing various aspects of this question for certain classes of Hamiltonian diffeomorphisms and Reeb flows and also for specific Hamiltonian systems such as magnetic flows. The project also opens up new research directions such as the study of non-contractible periodic orbits on closed manifolds. The PI will tackle these problems employing symplectic topological methods including Floer and quantum homological techniques, contact and symplectic homology, J-holomorphic curves, and spectral invariants, and will continue to develop new Floer theoretic techniques tailored for the study of periodic orbits. The projects have applications to other questions of interest in symplectic and contact dynamics and topology, classical dynamical systems, and Riemannian geometry.
哈密顿系统是一类能量耗散可以忽略的力学系统。例如,天体力学中的行星运动,不可压缩理想流体的流动,带电粒子在电磁场中的运动通常被视为哈密顿动力系统。其中一个最重要的问题,有关的动力学系统,并连接到许多其他分支的数学和物理是存在的周期轨道。与周期运动相对应,这是平衡后最简单的动力学现象,研究系统的周期轨道对于理解其全局行为至关重要。为了给,但一些应用,知识的周期轨道是至关重要的天文学,粒子加速器和流体动力学或可用于了解稳定性的解决方案,为大的时间。哈密顿系统往往有许多周期轨道,但证明即使是一个封闭轨道的存在往往需要先进和强大的数学工具。该研究项目旨在为广泛的一类哈密顿系统建立无限多个周期轨道的存在性,并分析此类系统之外的系统,这项工作将促进我们对保守系统动力学的理解,并导致适用于其他问题的新的强大技术的发展。提案中考虑的许多系统(例如,磁流)在物理学和工程学中具有重要意义,其中一些项目有望在数学物理学、几何力学和其他领域得到应用。该研究计划的重点是在各种设置下哈密顿动力系统存在无穷多个周期轨道的问题,以及PI目前正在开发的研究该问题的新方法。该研究包括几个相互关联的项目,解决这个问题的各个方面的某些类的哈密尔顿代数同态和Reeb流,也为特定的哈密尔顿系统,如磁流。该项目还开辟了新的研究方向,如研究封闭流形上的不可收缩周期轨道。PI将采用辛拓扑方法解决这些问题,包括Floer和量子同调技术,接触和辛同调,J-全纯曲线和谱不变量,并将继续开发新的Floer理论技术,专门用于周期轨道的研究。该项目已应用于辛和接触动力学和拓扑,经典动力系统和黎曼几何的其他感兴趣的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Basak Gurel其他文献

Basak Gurel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Basak Gurel', 18)}}的其他基金

Collaborative Research: Floer Theory and Topological Entropy
合作研究:弗洛尔理论和拓扑熵
  • 批准号:
    2304207
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Symplectic topology of Hamiltonian systems with infinitely many periodic orbits
具有无限多个周期轨道的哈密顿系统的辛拓扑
  • 批准号:
    1414685
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Symplectic topology of Hamiltonian systems with infinitely many periodic orbits
具有无限多个周期轨道的哈密顿系统的辛拓扑
  • 批准号:
    1207680
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Symplectic Topology of Hamiltonian Systems with Infinitely Many Periodic Orbits
具有无限多个周期轨道的哈密顿系统的辛拓扑
  • 批准号:
    0906204
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

Applications of periodic orbits in Hamiltonian dynamics and persistence modules
周期轨道在哈密顿动力学和持久性模块中的应用
  • 批准号:
    20K22302
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Periodic orbits in triangles
三角形的周期轨道
  • 批准号:
    511800-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    University Undergraduate Student Research Awards
Periodic orbits in triangles
三角形的周期轨道
  • 批准号:
    497146-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    University Undergraduate Student Research Awards
Periodic orbits of conservative systems below the Mañé critical energy value
低于 Mañé 临界能量值的保守系统的周期轨道
  • 批准号:
    273417880
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grants
Symplectic topology of Hamiltonian systems with infinitely many periodic orbits
具有无限多个周期轨道的哈密顿系统的辛拓扑
  • 批准号:
    1414685
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Periodic orbits of Hamiltonian systems
哈密​​顿系统的周期轨道
  • 批准号:
    1308501
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Pseudo-holomorphic curves and periodic orbits in Hamiltonian dynamics
哈密​​顿动力学中的伪全纯曲线和周期轨道
  • 批准号:
    25800041
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Efficient capture of the dominant periodic orbits underlying turbulent fluid flow.
有效捕获湍流流体流动的主要周期轨道。
  • 批准号:
    EP/K03636X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Symplectic topology of Hamiltonian systems with infinitely many periodic orbits
具有无限多个周期轨道的哈密顿系统的辛拓扑
  • 批准号:
    1207680
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Analysis of non-hyperbolic systems through unstable periodic orbits
通过不稳定周期轨道分析非双曲系统
  • 批准号:
    23740065
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了