CAREER: Reverse engineering the inflammatory signaling network from single-cell data

职业:从单细胞数据逆向工程炎症信号网络

基本信息

  • 批准号:
    1454301
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-02-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

1454301Miller-Jensen, Kathryn The innate immune system is the group of cells and their products that protect humans and other organisms against invading pathogens. When innate immune cells function abnormally, they can contribute to autoimmune diseases and cancer by secreting incorrect signals to neighboring cells. However, if drugs could specifically target the innate immune cells to return them to a healthy state, then it may be possible to harness them to treat these diseases. The innate immune response - like many other biological systems - is complicated by the fact that not all cells respond exactly the same way to the same stimulus, even though the cells are genetically identical. The goal of this CAREER award is to better understand the innate immune system by measuring noisy signals and secretion in single cells to discover how they work together to produce a protective immune response. This research will use novel experimental tools such as microfluidic devices, that permit measurement of many biological signals from single cells. Computational modeling will be used to interpret these complex single-cell data sets and develop new hypotheses about innate immune system regulation and new ways to modify the innate immune system to treat disease. An effective immune response requires extensive communication between cells of the innate and adaptive immune systems. Macrophages play a major role in regulating the immune response by executing a well-orchestrated cascade of secreted pro- and anti-inflammatory cytokines upon stimulation by microbial products, such as lipopolysaccharide (LPS). Recently, it has been discovered that there is significant cell-to-cell heterogeneity in innate immune intracellular signaling and secretion responses. The goal of this CAREER award is to test the hypotheses that 1) signaling dynamics regulate secretion heterogeneity; and 2) intercellular heterogeneity is converted to rapid and reliable responses in the population via paracrine (i.e., cell-to-neighbor cell) signaling. To explore these hypotheses, the researchers will use state-of-the-art experimental tools for single-cell analysis, including an integrated microfluidic device for live-cell imaging of signaling, transcriptional dynamics and secretion in the same single cells. These data will be used to classify heterogeneous 'secretion programs' (Specific Objective 1), identify sources of heterogeneity from transcription to secretion across differentially trafficked cytokines (Specific Objective 2), and to develop a mathematical model of signaling, cytokine secretion, and diffusion fit to single-cell data to make predictions about emergent population behavior (Specific Objective 3). The results will have significant implications for immunology, cancer, and beyond, and may suggest improved strategies for specifically modulating the innate immune response to treat disease. Microfluidic tools like the ones used in this research not only enable discovery of new biological mechanisms, but also provide fun and tangible ways to learn foundational skills in biology and engineering. Therefore, this CAREER award will support an educational initiative to increase diversity and participation in engineering through a summer outreach program for high school students in the greater New Haven area. Specifically, the researchers will use microfluidic devices to engage high school students and teach them basic concepts in immunology, biology and engineering through development of a summer teaching module (run through Yale's Pathways to Science Program) and summer lab internships. Such hands-on approaches are critical to recruit and retain a more diverse group of science, technology, engineering and mathematics (STEM) college graduates.
1454301Miller-Jensen,Kathryn 先天免疫系统是一组细胞及其产物,可保护人类和其他生物体免受病原体入侵。当先天免疫细胞功能异常时,它们可能会通过向邻近细胞分泌错误信号而导致自身免疫性疾病和癌症。然而,如果药物能够专门针对先天免疫细胞,使它们恢复健康状态,那么就有可能利用它们来治疗这些疾病。与许多其他生物系统一样,先天免疫反应很复杂,因为并非所有细胞对相同刺激的反应完全相同,即使细胞在遗传上是相同的。该职业奖的目标是通过测量单细胞中的噪声信号和分泌来更好地了解先天免疫系统,以发现它们如何协同工作以产生保护性免疫反应。这项研究将使用新型实验工具,例如微流体装置,可以测量来自单细胞的许多生物信号。计算模型将用于解释这些复杂的单细胞数据集,并提出有关先天免疫系统调节的新假设以及修改先天免疫系统以治疗疾病的新方法。有效的免疫反应需要先天性免疫系统和适应性免疫系统的细胞之间进行广泛的沟通。巨噬细胞在脂多糖(LPS)等微生物产物的刺激下,执行一系列精心策划的分泌促炎和抗炎细胞因子级联,在调节免疫反应中发挥着重要作用。最近,人们发现先天免疫细胞内信号传导和分泌反应存在显着的细胞间异质性。该职业奖的目标是测试以下假设:1)信号动力学调节分泌异质性; 2) 细胞间异质性通过旁分泌(即细胞到邻近细胞)信号传导转化为群体中快速可靠的反应。为了探索这些假设,研究人员将使用最先进的实验工具进行单细胞分析,包括用于对同一单细胞中的信号、转录动力学和分泌进行活细胞成像的集成微流体装置。这些数据将用于对异质“分泌程序”进行分类(具体目标 1),识别差异运输细胞因子从转录到分泌的异质性来源(具体目标 2),并开发信号、细胞因子分泌和扩散拟合的数学模型以适应单细胞数据,以预测新兴群体行为(具体目标 3)。这些结果将对免疫学、癌症等领域产生重大影响,并可能提出专门调节先天免疫反应来治疗疾病的改进策略。像本研究中使用的微流体工具不仅能够发现新的生物机制,而且还提供有趣且切实的方法来学习生物学和工程学的基础技能。因此,该职业奖将支持一项教育计划,通过针对大纽黑文地区高中生的夏季外展计划来增加工程学的多样性和参与度。具体来说,研究人员将使用微流体设备吸引高中生,并通过开发暑期教学模块(通过耶鲁大学的科学之路项目)和暑期实验室实习,向他们传授免疫学、生物学和工程学的基本概念。这种实践方法对于招募和留住更加多元化的科学、技术、工程和数学 (STEM) 大学毕业生群体至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kathryn Miller-Jensen其他文献

Kathryn Miller-Jensen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kathryn Miller-Jensen', 18)}}的其他基金

Engineering gene expression noise to modulate the collective inflammatory response
工程基因表达噪音来调节集体炎症反应
  • 批准号:
    2231765
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Using Single-Cell Data to Decipher Mechanisms of NF-kB-chromatin-mediated HIV Transcriptional Regulation
使用单细胞数据破译 NF-kB 染色质介导的 HIV 转录调控机制
  • 批准号:
    1264246
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Reverse Engineering of the Crystal Palace/Establishment of Engineering Analysis Methods in Construction History
水晶宫逆向工程/建筑史上工程分析方法的建立
  • 批准号:
    23K04209
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interplay between reverse transcription and host restriction
逆转录与宿主限制之间的相互作用
  • 批准号:
    10607086
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Engineering rejuvenation factors to reverse aging
工程年轻化因子逆转衰老
  • 批准号:
    2897567
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
A reverse engineering approach to sucrose replacement in biscuits: modelling texture
饼干中蔗糖替代品的逆向工程方法:纹理建模
  • 批准号:
    2886242
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
SaTC: CORE: Small: Precise and Robust Binary Reverse Engineering and its Applications
SaTC:核心:小型:精确而鲁棒的二进制逆向工程及其应用
  • 批准号:
    2243632
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Reverse Tissue-Manufacturing of the Multicellular Sinoatrial Node Organoids
多细胞窦房结类器官的逆向组织制造
  • 批准号:
    10660542
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Reverse Engineering the Extracellular Neighborhood to Support the Functional Tissue Unit: A Use Case to Restore Ovarian Function
对细胞外邻域进行逆向工程以支持功能组织单位:恢复卵巢功能的用例
  • 批准号:
    10530993
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Reverse Engineering Morphogenesis
逆向工程形态发生
  • 批准号:
    EP/W023075/1
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Reverse engineering morphogenesis
逆向工程形态发生
  • 批准号:
    EP/W023865/1
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Collaborative Research: EAGER: IC-Cloak: Integrated Circuit Cloaking against Reverse Engineering
合作研究:EAGER:IC-Cloak:针对逆向工程的集成电路隐形
  • 批准号:
    2213486
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了