CAREER: Two-Dimensional Phase Change Materials
职业:二维相变材料
基本信息
- 批准号:1455050
- 负责人:
- 金额:$ 47.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYPhase change materials have the property that they can be switched between multiple atomic configurations, yielding different properties like electrical conductivity. They are critical for electronic and energy applications, but it is rare for nature to provide one that can be readily switched near ambient conditions. This project builds on the recent prediction that some two-dimensional materials exhibit phase change properties near ambient conditions. These materials are nearly atomically thin, an aspect that provides potentially useful properties that ordinary phase change materials lack. The two-dimensional nature of these materials provides fundamentally new physical mechanisms for controlling the transformations that do not exist in known, bulk materials. In this project, the PI and his team will explore the phase change properties of two-dimensional materials and their potential for applications in energy, information storage, electronic, optical, and other important applications with broad societal benefit. The project will also elucidate the scientific theory of two-dimensional structural phase transformations, which is likely to be quite different from conventional theories for bulk materials. In the process, the research team will tackle some of the most challenging problems in computational materials science by extending the accuracy and scale of computational methods for predicting the properties of materials. To integrate outreach with this research, the PI will host and mentor a group of college-bound, under-represented minority high school students during the summers and involve them in aspects of this project. The PI will develop interactive Java applications that run real-time atomistic materials simulations aimed at broad research dissemination and materials education at the undergraduate and K-12 levels. These applications represent an exciting new paradigm for materials education that has potential to transform the way in which students learn about materials by putting them in the driver seat. These activities will have a high quality mentoring impact on a few students as well as broad dissemination of the research and teaching tools, potentially reaching thousands or more students. Some of the activities will be facilitated by Stanford's Office of Science Outreach which will assist the research team with post-experience success metrics. TECHNICAL SUMMARYPhase change materials like GeSbTe alloys are critical for electronic and energy applications but it is rare for nature to provide one with phase boundaries close enough to ambient conditions to be useful. Phase change materials can be switched between multiple atomic configurations that have different properties. This project builds on the recent prediction that some of the newly discovered two-dimensional (2D) materials exhibit such phase change properties and may provide new opportunities for energy, electronic, information storage, optical, and other important applications with broad societal benefit. The nearly atomically-thin nature of these materials provides fundamentally new physical mechanisms for controlling the transformations that do not exist in known, bulk materials. Furthermore, this project will elucidate the purely scientific theory of 2D structural phase transformations, which is likely to be quite different from conventional theories for bulk materials.The objectives are to discover how 2D phase change materials can be controlled and reduced to practice in experiments and device applications. This project seeks to understand the role of substrate interactions, electrostatic gating, temperature, and chemical alloys in the control and stabilization of these phases. In the process, the research team will tackle some of the most challenging problems in computational materials science by exploring new statistical techniques for systematically improvable analytical interatomic potentials and advancing density functional theory approaches for monolayers on substrates with van der Waals interactions. To integrate outreach with this research, the PI will host and mentor a group of college-bound, under-represented minority high school students during the summers and involve them in aspects of this project. The PI will develop interactive Java applications that run real-time atomistic materials simulations aimed at broad research dissemination and materials education at the undergraduate and K-12 levels. These applications represent an exciting new paradigm for materials education that has potential to transform the way in which students learn about materials by putting them in the driver seat. These activities will have high quality mentoring impact on a few students as well as broad dissemination of the research and teaching tools, potentially reaching thousands or more students. Some of the activities will be facilitated by Stanford's Office of Science Outreach which will assist the research team with post-experience success metrics.
非技术概述相变材料具有可以在多个原子构型之间切换的特性,从而产生不同的特性,如导电性。 它们对于电子和能源应用至关重要,但自然界很少提供一种可以在环境条件附近容易切换的器件。这个项目建立在最近的预测,一些二维材料表现出相变特性附近的环境条件。这些材料几乎原子级薄,这是提供普通相变材料所缺乏的潜在有用特性的一个方面。 这些材料的二维性质提供了用于控制已知的块状材料中不存在的转变的全新物理机制。在这个项目中,PI和他的团队将探索二维材料的相变特性及其在能源,信息存储,电子,光学和其他具有广泛社会效益的重要应用中的应用潜力。 该项目还将阐明二维结构相变的科学理论,这可能与传统的大块材料理论有很大不同。在此过程中,研究团队将通过扩展预测材料性能的计算方法的准确性和规模来解决计算材料科学中一些最具挑战性的问题。为了将外展与这项研究相结合,PI将在暑假期间接待和指导一群即将上大学的、代表性不足的少数民族高中生,并让他们参与这个项目的各个方面。PI将开发交互式Java应用程序,运行实时原子材料模拟,旨在广泛的研究传播和材料教育在本科和K-12水平。 这些应用程序代表了材料教育的一个令人兴奋的新范式,有可能改变学生通过将他们放在驾驶座上学习材料的方式。这些活动将对少数学生产生高质量的指导影响,并广泛传播研究和教学工具,可能使数千名或更多的学生受益。 其中一些活动将由斯坦福大学的科学推广办公室提供便利,该办公室将协助研究团队进行经验后的成功衡量。技术概述相变材料如GeSbTe合金对于电子和能源应用是至关重要的,但是自然界很少提供具有足够接近环境条件的相边界的材料以使其有用。 相变材料可以在具有不同性质的多种原子配置之间切换。该项目建立在最近的预测基础上,即一些新发现的二维(2D)材料表现出这种相变特性,并可能为能源,电子,信息存储,光学和其他具有广泛社会效益的重要应用提供新的机会。这些材料的几乎原子级薄的性质提供了用于控制已知的块状材料中不存在的转变的全新物理机制。此外,该项目将阐明2D结构相变的纯科学理论,这可能与传统的体材料理论有很大不同。目标是发现如何控制2D相变材料并将其简化为实验和设备应用中的实践。 本项目旨在了解基板相互作用,静电门控,温度和化学合金在控制和稳定这些阶段的作用。 在此过程中,研究团队将通过探索新的统计技术来解决计算材料科学中一些最具挑战性的问题,以系统地改进分析原子间势,并推进具有货车德瓦尔斯相互作用的基底上单层的密度泛函理论方法。为了将外展与这项研究相结合,PI将在暑假期间接待和指导一群即将上大学的、代表性不足的少数民族高中生,并让他们参与这个项目的各个方面。PI将开发交互式Java应用程序,运行实时原子材料模拟,旨在广泛的研究传播和材料教育在本科和K-12水平。 这些应用程序代表了材料教育的一个令人兴奋的新范式,有可能改变学生通过将他们放在驾驶座上学习材料的方式。这些活动将对少数学生产生高质量的指导影响,并广泛传播研究和教学工具,可能使数千名或更多的学生受益。 其中一些活动将由斯坦福大学的科学推广办公室提供便利,该办公室将协助研究团队进行经验后的成功衡量。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evan Reed其他文献
Evan Reed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evan Reed', 18)}}的其他基金
DMREF/Collaborative Research: Theory-Enabled Development of 2D Metal Dichalcogenides as Active Elements of On-Chip Silicon-Integrated Optical Communication
DMREF/合作研究:作为片上硅集成光通信有源元件的二维金属二硫化物的理论开发
- 批准号:
1436626 - 财政年份:2014
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
相似国自然基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
激发态氢气分子(e,2e)反应三重微分截面的高阶波恩近似和two-step mechanism修正
- 批准号:11104247
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
CAREER: Multitrack Read Channel Designs for Modern Two-Dimensional Magnetic Recording
职业:现代二维磁记录的多轨读取通道设计
- 批准号:
2238990 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
CAREER: Bicrystallography-informed Mechanics of Two-dimensional Heterointerfaces
职业:基于双晶学的二维异质界面力学
- 批准号:
2239734 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
CAREER: Order and Disorder in Two-dimensional Fluid Motion
职业:二维流体运动中的有序与无序
- 批准号:
2235395 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
CAREER: Manipulating Barocaloric Effects in Two-Dimensional Perovskites
职业:操纵二维钙钛矿中的气压效应
- 批准号:
2238113 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
CAREER: Understanding Strain and Strain Relaxation Mechanisms in Complex Two-Dimensional Materials
职业:了解复杂二维材料中的应变和应变松弛机制
- 批准号:
2239545 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
CAREER: Quantum defects in two-dimensional materials by local-symmetry-guided data-driven design
职业:通过局域对称引导的数据驱动设计研究二维材料中的量子缺陷
- 批准号:
2314050 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
CAREER: Asymmetrical Fracture of Two-Dimensional High Entropy Materials
职业:二维高熵材料的不对称断裂
- 批准号:
2420622 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
CAREER: Rational Design of One-Dimensional Contacts to Two-Dimensional Atomically Thin Heterostructure for High-Performance and Low Noise Field Effect Transistors and Biosensors
职业:一维接触到二维原子薄异质结构的合理设计,用于高性能和低噪声场效应晶体管和生物传感器
- 批准号:
2145962 - 财政年份:2022
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
CAREER: Real-Time, Selective Gas Sensing in Complex Gas Compositions by Molecular Sieving via Robust Two-Dimensional Heterostructures
职业:通过稳健的二维异质结构进行分子筛分,对复杂气体成分进行实时、选择性气体传感
- 批准号:
2145549 - 财政年份:2022
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant