CAREER: Rational Design of One-Dimensional Contacts to Two-Dimensional Atomically Thin Heterostructure for High-Performance and Low Noise Field Effect Transistors and Biosensors
职业:一维接触到二维原子薄异质结构的合理设计,用于高性能和低噪声场效应晶体管和生物传感器
基本信息
- 批准号:2145962
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-15 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Field Effect Transistors (FETs) with two-dimensional atomically thin materials and one-dimensional contacts are studied in this project. These transistors will demonstrate high performance and low noise characteristics and will lay the foundation for emerging technologies including biosensor devices and circuits. Though silicon-based electronics have been the basis for innovation for several decades, their performance at atomically thin dimensions breaks down due to the bottleneck in its intrinsic crystal symmetry and associated physical and chemical properties. This project investigates the use of graphene, hexagonal boron nitride, and transition metal dichalcogenides to form atomically thin FETs. Given their unprecedented physical properties such as material and device tunability and energy efficiency at the atomic level, these devices will revolutionize the use of FETs in new applications that will transform electronics across industries such as communications, healthcare, and environmental sensing. It is expected that these devices and circuits that deploy them will play a great role in the development of internet-of-things (IoT), Industry 4.0, data analytics, artificial intelligence, and machine learning. This project will train next generation researchers, including women scientists and engineers and those from underrepresented populations, in micro-nanoscale science and engineering to gain expertise in addressing some of the complex societal problems such as creating sensors for environmental monitoring to disease diagnostics. The results obtained from this project will be integrated in educational activities. The proposed research aims to demonstrate high performance and low noise field effect transistor devices that will uniquely be used as a platform for highly sensitive biosensors. The objectives of the proposal is to rationally design to study correlated electrical transport and noise phenomena in number of two dimensional atomically thin heterostructure field effect transistors involving graphene, hexagonal boron nitride, and transition metal dichalcogenides (such as molybdenum disulfide) by understanding (1) contact engineering with low work function metals and semimetals as source and drain electrodes, (2) edge contacted architectures with large transfer length and low contact resistance, (3) manipulating polar phonons by dielectric engineering using isotopically pure hexagonal boron nitrides and (4) development of antibody/antigen immunosensors with high sensitivity for SARS-CoV-2. Key to all these successes requires a fundamental understanding in material tunability in atomic scale, quantum confinement and relation to band structure, device architecture and integration, and correlated phenomena between electrical transport and noise physics. Based on experimental design parameters and results (such as a two probe vs. four probe measurement design), new device models beyond the traditional silicon transistor and biosensor model will be developed. Quantum confined physics will be exploited to demonstrate their structure and property tunability and their relation to the functionality (e.g., sensing characteristics).This project is jointly funded by ECCS and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本计画研究二维原子薄材料一维接触场效电晶体。 这些晶体管将展示高性能和低噪声特性,并将为包括生物传感器设备和电路在内的新兴技术奠定基础。 虽然硅基电子产品几十年来一直是创新的基础,但由于其固有的晶体对称性和相关的物理和化学性质的瓶颈,它们在原子级薄尺寸下的性能会下降。本项目研究使用石墨烯、六方氮化硼和过渡金属二硫属化物来形成原子级薄FET。 鉴于其前所未有的物理特性,如材料和器件的可调谐性以及原子级的能效,这些器件将彻底改变FET在新应用中的使用,这些应用将改变通信,医疗保健和环境传感等行业的电子产品。 预计这些设备和部署它们的电路将在物联网(IoT),工业4.0,数据分析,人工智能和机器学习的发展中发挥重要作用。该项目将培训下一代研究人员,包括女性科学家和工程师以及来自代表性不足人群的研究人员,在微纳米科学和工程方面获得解决一些复杂社会问题的专业知识,例如创建用于环境监测和疾病诊断的传感器。该项目的成果将纳入教育活动。 该研究旨在展示高性能和低噪声场效应晶体管器件,这些器件将独特地用作高灵敏度生物传感器的平台。该提案的目标是合理设计以研究涉及石墨烯、六方氮化硼和过渡金属二硫属化物的许多二维原子薄异质结构场效应晶体管中的相关电输运和噪声现象(例如二硫化钼)通过理解(1)用低功函数金属和半金属作为源电极和漏电极的接触工程,(2)具有大传输长度和低接触电阻的边缘接触结构,(3)使用同位素纯的六方氮化硼通过介电工程操纵极性声子,以及(4)开发对SARS-CoV-2具有高灵敏度的抗体/抗原免疫传感器。所有这些成功的关键,需要在原子尺度的材料可调性,量子限制和能带结构,设备架构和集成,以及电传输和噪声物理之间的相关现象的基本理解。基于实验设计参数和结果(例如双探针与四探针测量设计),将开发出超越传统硅晶体管和生物传感器模型的新器件模型。将利用量子限制物理来展示它们的结构和性质可调性以及它们与功能的关系(例如,该项目由ECCS和激励竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suprem Das其他文献
Suprem Das的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suprem Das', 18)}}的其他基金
SitS NSF-UKRI: Real-time and Continuous Monitoring of Phosphates in the Soil with Graphene-Based Printed Sensor Arrays
SitS NSF-UKRI:使用基于石墨烯的印刷传感器阵列实时连续监测土壤中的磷酸盐
- 批准号:
1935676 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于Rational Krylov法和小波域稀疏约束的时间域海洋电磁三维正反演研究
- 批准号:41804098
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Rational-Tensor(RTCam)摄像机模型的序列图像间几何框架研究
- 批准号:61072105
- 批准年份:2010
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Rational Design of Dual-Functional Photocatalysts for Synthetic Reactions: Controlling Photosensitization and Reaction with a Single Nanocrystal
职业:用于合成反应的双功能光催化剂的合理设计:用单个纳米晶体控制光敏化和反应
- 批准号:
2339866 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Rational Design of Ferroelectric Semiconductors
职业:铁电半导体的合理设计
- 批准号:
2145797 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Towards rational design and control of oxygen migration in oxide thin films for nano-ionic technologies
职业:针对纳米离子技术的氧化物薄膜中氧迁移的合理设计和控制
- 批准号:
2144383 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Rational Design of Nanoporous Catalysts for Carbonylation Reactions
职业:羰基化反应纳米多孔催化剂的合理设计
- 批准号:
2144360 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Rational Design of Immune Cell-Homing Biomaterials for Immune Regulation
职业:用于免疫调节的免疫细胞归巢生物材料的合理设计
- 批准号:
2143673 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Rational design of non-heme iron halogenases
职业:非血红素铁卤化酶的合理设计
- 批准号:
2046527 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Rational Design of Defect-Ordered Architectures in Oxygen-Deficient Perovskites to Control the Oxygen-Evolution Activity
职业:合理设计缺氧钙钛矿中的缺陷有序结构以控制析氧活性
- 批准号:
1943085 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Toward Rational Discovery and Design of Metastable Materials
职业:亚稳态材料的合理发现和设计
- 批准号:
1945010 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Computation-Enabled Rational Design of Cytochrome P450 for Ionic Liquid Biodegradation
职业:用于离子液体生物降解的细胞色素 P450 的计算合理设计
- 批准号:
1845143 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Rational Design of Phase-Changing Nanomaterials for Spatiotemporal Protein Delivery
职业:用于时空蛋白质递送的相变纳米材料的合理设计
- 批准号:
1845053 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant