CAREER: Realizing the ultrastrong coupling regime of quantum electrodynamics using high-impedance Josephson superconducting circuits
职业:使用高阻抗约瑟夫森超导电路实现量子电动力学的超强耦合机制
基本信息
- 批准号:1455261
- 负责人:
- 金额:$ 53.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-01 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical. Quantum electrodynamics (QED) is the theory that describes how light and matter interact. In natural systems the strength of this interaction is fixed by the fine structure constant which is a fundamental natural constant. The fine structure constant is much less than one so that light and matter interact only weakly. Recently, using artificial atoms, such as quantum dots, systems have been fabricated where the effective fine structure constant is controlled by the material properties. This opens the exciting possibility of making the fine structure constant different than occurs in nature - opening up new regimes of physics to explore. This project seeks to create artificial atoms out of superconducting junctions where the fine structure constant can be greater than one. This will shed light on fundamental questions of light-matter interaction. At the same time these circuits can be used to form fault tolerant qubits for quantum computing. This project will provide training to graduate and undergraduate students in state-of-the-art experimental techniques such as nanofabrication, low-temperature measurements, and quantum control of superconducting qubits. The PI will also develop a novel new course on quantum mechanics based on an analogy with electrical circuits as well as participating in outreach activities to the general public. Technical. This project aims at an experimental implementation of quantum electrodynamics (QED) in the ultrastrong coupling regime. Ultra-strong QED is a situation where a single atom is coupled to a vacuum quantum field with an effective fine structure constant exceeding a unity. Our approach is to couple superconducting qubits (artificial atoms) to very high-impedance microwaves (fields), with the impedance approaching the value of resistance quantum. Such large impedances can be achieved by exciting microwaves inside either an array of Josephson tunnel junctions or a highly disordered superconducting film. The effective fine structure constant of resonators is a material property, because the "magnetic" energy of the radio-frequency (RF) field is created predominantly due to the inertia of the moving Cooper pairs rather than due to stressing the vacuum with a magnetic field. Novel effects, associated with the ultrastrong light-matter interaction regime, such as spontaneous polarization of vacuum, superradiance quantum phase transitions, and critical behavior in the spin-boson physics, will be explored using the powerful arsenal of superconducting qubit techniques.
非技术性的。量子电动力学(QED)是描述光和物质如何相互作用的理论。 在自然系统中,这种相互作用的强度由精细结构常数确定,精细结构常数是基本的自然常数。 精细结构常数远小于1,因此光和物质的相互作用很弱。 最近,使用人造原子,如量子点,系统已被制造,其中有效的精细结构常数是由材料性能控制。 这开启了令人兴奋的可能性,使精细结构常数与自然界中发生的不同-开辟了新的物理学领域进行探索。 该项目旨在从精细结构常数可以大于1的超导结中创建人造原子。这将揭示光与物质相互作用的基本问题。 与此同时,这些电路可以用于形成量子计算的容错量子比特。 该项目将为研究生和本科生提供最先进的实验技术培训,如纳米纤维,低温测量和超导量子比特的量子控制。 PI还将开发一个基于电路类比的量子力学新课程,并参与面向公众的外联活动。 技术.本计画的目的是在实验上实现量子电动力学在超强耦合区的应用。超强QED是指单个原子与有效精细结构常数大于1的真空量子场耦合的情形。我们的方法是将超导量子比特(人造原子)耦合到非常高阻抗的微波(场),阻抗接近电阻量子的值。这样大的阻抗可以通过在约瑟夫森隧道结阵列或高度无序的超导膜内激发微波来实现。谐振器的有效精细结构常数是一种材料特性,因为射频(RF)场的“磁”能主要是由于移动的库珀对的惯性而产生的,而不是由于用磁场对真空施加应力而产生的。与超强光-物质相互作用机制相关的新效应,如真空的自发极化、超辐射量子相变和自旋玻色子物理学中的临界行为,将使用强大的超导量子比特技术进行探索。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vladimir Manucharyan其他文献
Vladimir Manucharyan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Realizing Human Brain Stimulation of Deep Regions Based on Novel Personalized Electrical Computational Modelling
基于新型个性化电计算模型实现人脑深部刺激
- 批准号:
23K25176 - 财政年份:2024
- 资助金额:
$ 53.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Realizing Carbon Neutrality and Resource/Energy Self-sufficiency in Wastewater Treatment Plants by Integrating Three Functional Granular Sludges
通过整合三种功能的颗粒污泥实现污水处理厂的碳中和和资源/能源自给自足
- 批准号:
24H00767 - 财政年份:2024
- 资助金额:
$ 53.96万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Realizing High Temperature Exciton Condensates at Molecule/2D van der Waals Interfaces
在分子/2D 范德华界面实现高温激子凝聚
- 批准号:
2401141 - 财政年份:2024
- 资助金额:
$ 53.96万 - 项目类别:
Standard Grant
Exploration of edible ink materials for realizing near-infrared stealth printing for agricultural products
可食用墨水材料实现农产品近红外隐形印刷的探索
- 批准号:
23K18068 - 财政年份:2023
- 资助金额:
$ 53.96万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
CAREER: Realizing next generation light-material interactions via directional, collective photoluminescence and energy transport of surface-sensitive nanocrystals
职业:通过表面敏感纳米晶体的定向集体光致发光和能量传输实现下一代光-材料相互作用
- 批准号:
2240140 - 财政年份:2023
- 资助金额:
$ 53.96万 - 项目类别:
Continuing Grant
Realizing itinerant Rydberg models through distance-selective dissipation
通过距离选择性耗散实现流动里德伯模型
- 批准号:
516378631 - 财政年份:2023
- 资助金额:
$ 53.96万 - 项目类别:
WBP Fellowship
Realizing dexterous grasping operations in Metaverses by presenting rolling and sliding tactile cues to three fingers
通过向三指呈现滚动和滑动的触觉提示,实现元宇宙中灵巧的抓取操作
- 批准号:
23H03432 - 财政年份:2023
- 资助金额:
$ 53.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Metal Oxide Heterostructure for Realizing Robust Molecular Discrimination
用于实现稳健分子辨别的金属氧化物异质结构
- 批准号:
23H00254 - 财政年份:2023
- 资助金额:
$ 53.96万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Tri-fair Biometrics: Realizing a fair biometric authentication system that satisfies the three requirements of biometrics
Tri-fair Biometrics:实现公平的生物识别认证系统,满足生物识别的三个要求
- 批准号:
23H03395 - 财政年份:2023
- 资助金额:
$ 53.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Realizing Alternative Cements with Chemical Kinetics: Tuned Mechanical–Chemical Properties of Cementitious Magnesium Silicate Hydrates by Multi-Scale Synthetic Control
职业:利用化学动力学实现替代水泥:通过多尺度合成控制调整胶凝硅酸镁水合物的机械和化学性能
- 批准号:
2342381 - 财政年份:2023
- 资助金额:
$ 53.96万 - 项目类别:
Continuing Grant














{{item.name}}会员




