MKP1 regulates plant metabolite signals that induce bacterial virulence: How and where are these signals controlled?
MKP1 调节诱导细菌毒力的植物代谢信号:这些信号如何以及在哪里受到控制?
基本信息
- 批准号:1456256
- 负责人:
- 金额:$ 74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many plants normally become infected by bacterial pathogens that then cause reduced food yields or even death. However, the investigators recently discovered a mutant plant with a novel mechanism for enhanced resistance against bacterial pathogens whereby the plant prevents the bacteria from becoming infectious. In this project, the investigators will determine how the mutant uniquely stops the pathogen by studying both the location of and the mechanism(s) controlling this resistance. The investigators will also examine if the mutant has enhanced resistance against other types of pathogens (e.g. fungal pathogens) or if the mutation causes a trade-off of enhanced resistance against one type of pathogen at the expense of increased susceptibility to another. The goal of this project is to determine if there is a novel, genetic means of improving crop survival against pathogens without any unintended penalties.Most pathogenic bacteria express a type three secretion system (T3SS) to suppress the plant's immune responses, thus allowing the pathogen to acquire nutrients needed to replicate. The investigators recently identified an Arabidopsis mutant (mkp1) that produces less of the chemical signals that induce the T3SS in bacteria, thus resulting in a plant with enhanced resistance. Translating this discovery into improved resistance in the field requires a better understanding of the underlying principles. Does MKP1 regulate levels of transporters controlling movement of metabolites across the plasma membrane (PM) to restrict the chemical signals (addressed by quantitative plasma membrane proteomics)? Does MKP1 regulate the cellular production of these metabolites (addressed by quantitative metabolomics)? Do all cell types in the leaf contribute equally to the production of the metabolites and, therefore, resistance (addressed by cell/tissue-specific complementation? Finally, it is critical to test an informative spectrum of pathogens to determine if resistance in mkp1 extends to other types of pathogens or, perhaps more importantly, if the changes in mkp1 may have negative consequences making it more susceptible to unrelated pathogens. A better understanding of this apparently novel mechanism of resistance may provide an important basis for improving sustainable resistance in the field. The investigators will expand a Plant Biology & Public Policy Workshop they developed for undergraduates where students learn how policy makers at the local, state, and national level affect research at universities. Students will learn to communicate the importance of basic research by providing the most useful information.
许多植物通常会被细菌病原体感染,然后导致粮食减产甚至死亡。然而,研究人员最近发现了一种突变植物,它具有一种新的机制,可以增强对细菌病原体的抵抗力,从而防止细菌感染。在这个项目中,研究人员将通过研究抗药性的位置和控制这种耐药性的机制(S)来确定突变体如何独特地阻止病原体。研究人员还将检查该突变是否增强了对其他类型病原体(例如真菌病原体)的抵抗力,或者该突变是否以增加对另一种病原体的易感性为代价来权衡对一种病原体的抵抗力增强。该项目的目标是确定是否存在一种新的遗传手段来提高作物对病原体的存活率,而不会受到任何意外的惩罚。大多数病原菌表达三型分泌系统(T3SS)来抑制植物的免疫反应,从而允许病原体获得复制所需的营养。研究人员最近发现了一种拟南芥突变体(Mkp1),它产生的化学信号较少,而诱导细菌T3SS的化学信号较少,从而导致植物具有增强的抗性。将这一发现转化为该领域中更好的抵抗力,需要更好地理解基本原理。Mkp1是否调节转运体的水平,从而控制代谢物在质膜上的移动,从而限制化学信号(通过定量质膜蛋白质组学来解决)?Mkp1是否调节细胞中这些代谢物的产生(通过定量代谢组学解决)?叶片中的所有细胞类型是否对代谢物的产生都有同等的贡献,因此对抗性(通过细胞/组织特异性互补解决)?最后,关键是要测试病原体的信息谱,以确定mkp1的耐药性是否延伸到其他类型的病原体,或者更重要的是,mkp1的变化是否可能产生负面后果,使其更容易受到无关病原体的影响。更好地了解这一明显新颖的抗性机制可能为提高田间可持续抗性提供重要基础。研究人员将扩大他们为本科生开发的植物生物学与公共政策研讨会,在那里,学生们将学习地方、州和国家层面的政策制定者如何影响大学的研究。学生将学习通过提供最有用的信息来传达基础研究的重要性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Peck其他文献
シロイヌナズナの ABA 応答における グループ C Raf 型タンパク質リン酸化酵素 Raf36 の機能解析
C组Raf型蛋白激酶Raf36在拟南芥ABA反应中的功能分析
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
神山佳明;廣谷美咲;石川慎之祐;峯岸芙有子;Conner Rogan;片桐壮太郎;高橋史憲;野元美佳;石川一也;児玉豊;多田安臣;竹澤大輔;Jeffrey Anderson;Scott Peck;篠崎一雄;梅澤泰史 - 通讯作者:
梅澤泰史
How does tumor suppressor p53 search for target DNA sequence? -single molecule approach-
抑癌基因p53如何寻找靶DNA序列?
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
神山佳明;廣谷美咲;峯岸芙有子;野元美佳;多田安臣;坂田洋一;竹澤大輔;Scott Peck;梅澤泰史;Yutetsu Kuruma;鎌形清人 - 通讯作者:
鎌形清人
ABAシグナル伝達の主要経路に関わるグループC Raf型タンパク質リン酸化酵素の機能解析
ABA信号转导主要通路中C组Raf型蛋白激酶的功能分析
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
神山佳明;廣谷美咲;峯岸芙有子;野元美佳;多田安臣;坂田洋一;竹澤大輔;Scott Peck;梅澤泰史 - 通讯作者:
梅澤泰史
アブシジン酸応答に関わるグループC Raf型タンパク質リン酸化酵素の機能解析
C组Raf型蛋白激酶参与脱落酸反应的功能分析
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
神山佳明;廣谷美咲;峯岸芙有子;野元美佳;多田安臣;坂田洋一;竹澤大輔;Scott Peck;梅澤泰史 - 通讯作者:
梅澤泰史
Scott Peck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Peck', 18)}}的其他基金
IntBIO: Coordinating and integrating whole-plant responses to abiotic and biotic stress signals via changes in plasma membrane proteomes
IntBIO:通过质膜蛋白质组的变化协调和整合全植物对非生物和生物胁迫信号的反应
- 批准号:
2217322 - 财政年份:2022
- 资助金额:
$ 74万 - 项目类别:
Standard Grant
Role and Regulation of MAP Kinase Phosphatase 1 as a Negative Regulator of Plant Innate Immune Responses
MAP 激酶磷酸酶 1 作为植物先天免疫反应负调节剂的作用和调节
- 批准号:
1051286 - 财政年份:2011
- 资助金额:
$ 74万 - 项目类别:
Continuing Grant
Phosphoproteomic analysis of the rice XA21-Mediated Resistance Response
水稻 XA21 介导的抗性反应的磷酸化蛋白质组学分析
- 批准号:
0817738 - 财政年份:2008
- 资助金额:
$ 74万 - 项目类别:
Standard Grant
相似海外基金
Depalmitoylation regulates hepatic glucose metabolism
去棕榈酰化调节肝脏葡萄糖代谢
- 批准号:
10387053 - 财政年份:2021
- 资助金额:
$ 74万 - 项目类别:
Depalmitoylation regulates hepatic glucose metabolism
去棕榈酰化调节肝脏葡萄糖代谢
- 批准号:
10478914 - 财政年份:2021
- 资助金额:
$ 74万 - 项目类别:
An all-round peroxidase, CWPO-C, regulates plant growth through the auxin catabolism
CWPO-C 是一种全能过氧化物酶,通过生长素分解代谢调节植物生长
- 批准号:
20H03046 - 财政年份:2020
- 资助金额:
$ 74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Molecular and neural mechanisms that plant steroid hormone regulates insect memory
植物类固醇激素调节昆虫记忆的分子和神经机制
- 批准号:
20K21307 - 财政年份:2020
- 资助金额:
$ 74万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
All-round peroxidase contribute the auxin catabolism and regulates plant growth and morphology
全能过氧化物酶有助于生长素分解代谢并调节植物生长和形态
- 批准号:
18K19234 - 财政年份:2018
- 资助金额:
$ 74万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Adipose derived secretome (ADS) uniquely regulates intestinal epithelial cell nutrient absorption during obesity
脂肪源性分泌组 (ADS) 独特地调节肥胖期间肠上皮细胞的营养吸收
- 批准号:
10165247 - 财政年份:2018
- 资助金额:
$ 74万 - 项目类别:
Adipose derived secretome (ADS) uniquely regulates intestinal epithelial cell nutrient absorption during obesity
脂肪源性分泌组 (ADS) 独特地调节肥胖期间肠上皮细胞的营养吸收
- 批准号:
10460412 - 财政年份:2018
- 资助金额:
$ 74万 - 项目类别:
Investigating how the cellular ER stress machinery regulates plant virus infection
研究细胞内质网应激机制如何调节植物病毒感染
- 批准号:
1759034 - 财政年份:2018
- 资助金额:
$ 74万 - 项目类别:
Standard Grant
The Interferon-beta (IFN-beta)/SETDB2 Epigenetic Axis Regulates Inflammation And Metabolism In Diabetic Wounds
干扰素-β (IFN-β)/SETDB2 表观遗传轴调节糖尿病伤口的炎症和代谢
- 批准号:
10240278 - 财政年份:2017
- 资助金额:
$ 74万 - 项目类别:
How plant villin regulates chloroplast anchoring
植物绒毛如何调节叶绿体锚定
- 批准号:
26440143 - 财政年份:2014
- 资助金额:
$ 74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




