ABI Innovation: Computational Tools for Transcriptome Reconstruction

ABI Innovation:转录组重建的计算工具

基本信息

  • 批准号:
    1458178
  • 负责人:
  • 金额:
    $ 66.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

This project aims to develop an efficient and accurate new computational method for identifying novel transcripts and their expression levels. Transcriptome assembly and gene expression profiling are key components in a vast range of biological experiments today, playing a central role in unraveling the complexity of cell types, cell differentiation, responses to stress, and myriad other conditions. Although transcript assemblers have been developed previously, most of them perform poorly on real, large-scale RNA sequencing data sets, severely limiting their impact. To produce better transcript models, an innovative new method will be developed, combining ideas from several scientific disciplines. By ensuring that this method works on the very large data sets that are routinely produced by modern next-generation sequencing instruments, this project will have an impact on a wide range of studies across the spectrum of eukaryotic species. It will also enhance the research infrastructure by providing free, open source software that can be re-used by other scientists for commercial, educational, or basic research endeavors.This new method uses an optimization technique known as maximum flow in a specially-constructed flow network to determine gene expression levels, and it does this while simultaneously assembling each splice variant of a gene. It also incorporates techniques from whole-genome assembly, which has the potential to dramatically improve detection of alternative splice variants. By using pre-assembled reads, the computational load and memory storage requirements associated with transcriptome assembly will be greatly reduced, as many of the short reads will be combined into longer contigs that span multiple exons. Furthermore, the new method will address a critical need for a transcriptome assembly method that is able to handle the numerous gaps present in draft genomes, and to produce better-assembled transcripts by stitching together portions of transcripts situated on multiple fragments of the genome. The results of this project will be disseminated at http://ccb.jhu.edu.
该项目旨在开发一种高效、准确的新计算方法来识别新的转录本及其表达水平。转录组组装和基因表达谱是当今大量生物实验的关键组成部分,在揭示细胞类型、细胞分化、应激反应和无数其他条件的复杂性方面发挥着核心作用。尽管之前已经开发出转录本组装器,但大多数在真实的大规模 RNA 测序数据集上表现不佳,严重限制了它们的影响。为了产生更好的转录本模型,将开发一种创新的新方法,结合多个科学学科的想法。通过确保该方法适用于现代下一代测序仪器通常产生的非常大的数据集,该项目将对真核物种范围内的广泛研究产生影响。它还将通过提供免费的开源软件来增强研究基础设施,这些软件可以被其他科学家重复用于商业、教育或基础研究工作。这种新方法在专门构建的流网络中使用一种称为最大流的优化技术来确定基因表达水平,并在同时组装基因的每个剪接变体的同时实现这一点。它还结合了全基因组组装技术,有可能显着改善选择性剪接变体的检测。通过使用预组装的读数,与转录组组装相关的计算负载和内存存储要求将大大减少,因为许多短读数将被组合成跨越多个外显子的较长重叠群。此外,新方法将解决转录组组装方法的关键需求,该方法能够处理基因组草案中存在的众多缺口,并通过将位于基因组多个片段上的转录本部分缝合在一起来产生更好组装的转录本。该项目的结果将在 http://ccb.jhu.edu 上发布。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mihaela Pertea其他文献

Do-it-yourself genetic testing
  • DOI:
    10.1186/gb-2010-11-10-404
  • 发表时间:
    2010-10-01
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Steven L Salzberg;Mihaela Pertea
  • 通讯作者:
    Mihaela Pertea
Des trucs et astuces pour la replantation digitales chez les enfants
  • DOI:
    10.1016/j.hansur.2016.10.148
  • 发表时间:
    2016-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mihaela Pertea;Diana Cheaito;Issa Raid;Bogdan Iosip;Oxana-madalina Grosu
  • 通讯作者:
    Oxana-madalina Grosu
Plaie par injection à haute pression — petite lésion cutanée, traumatisme tissulaire majeur
  • DOI:
    10.1016/j.hansur.2023.09.349
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mihaela Pertea;Stefana Luca;Alexandru Amarandei;Madalina Cristina Fotea;Dorin Sumanaru;Alexandru Tomac
  • 通讯作者:
    Alexandru Tomac
«Reposition-flap» – Une technique chirurgicale avec des bons résultats en cas d’avulsion du pouce
  • DOI:
    10.1016/j.hansur.2022.09.197
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Stefana Luca;Madalina Cristina Fotea;Dorin Sumanaru;Mihaela Pertea
  • 通讯作者:
    Mihaela Pertea
L’utilité du nouvel index échographique dans le diagnostic du syndrome du canal carpien
  • DOI:
    10.1016/j.hansur.2022.09.201
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dorin Sumanaru;Stefana Luca;Madalina Fotea;Mihaela Pertea
  • 通讯作者:
    Mihaela Pertea

Mihaela Pertea的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mihaela Pertea', 18)}}的其他基金

ABI Development: Improving transcriptome assembly from RNA-seq data
ABI 开发:改进 RNA-seq 数据的转录组组装
  • 批准号:
    1759518
  • 财政年份:
    2018
  • 资助金额:
    $ 66.28万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
  • 批准号:
    2028361
  • 财政年份:
    2020
  • 资助金额:
    $ 66.28万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
  • 批准号:
    1661280
  • 财政年份:
    2017
  • 资助金额:
    $ 66.28万
  • 项目类别:
    Standard Grant
Collaborative Project: ABI Innovation: Computational Identification & Screening for Deleterious Mutants
合作项目:ABI 创新:计算识别
  • 批准号:
    1661391
  • 财政年份:
    2017
  • 资助金额:
    $ 66.28万
  • 项目类别:
    Standard Grant
ABI Innovation: Computational Methods to Study Gene Transcription Initiation Patterns
ABI Innovation:研究基因转录起始模式的计算方法
  • 批准号:
    1661414
  • 财政年份:
    2017
  • 资助金额:
    $ 66.28万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
  • 批准号:
    1661289
  • 财政年份:
    2017
  • 资助金额:
    $ 66.28万
  • 项目类别:
    Standard Grant
ABI Innovation: Collaborative Research: Computational framework for inference of metabolic pathway activity from RNA-seq data
ABI Innovation:协作研究:从 RNA-seq 数据推断代谢途径活性的计算框架
  • 批准号:
    1564559
  • 财政年份:
    2016
  • 资助金额:
    $ 66.28万
  • 项目类别:
    Standard Grant
ABI Innovation: A computational framework for integrating image informatics with transcriptomics for discovering spatiotemporally resolved regulatory gene networks in plants
ABI Innovation:将图像信息学与转录组学相结合的计算框架,用于发现植物中时空解析的调控基因网络
  • 批准号:
    1564621
  • 财政年份:
    2016
  • 资助金额:
    $ 66.28万
  • 项目类别:
    Standard Grant
ABI Innovation: Collaborative Research: Computational framework for inference of metabolic pathway activity from RNA-seq data
ABI Innovation:协作研究:从 RNA-seq 数据推断代谢途径活性的计算框架
  • 批准号:
    1564899
  • 财政年份:
    2016
  • 资助金额:
    $ 66.28万
  • 项目类别:
    Standard Grant
ABI Innovation: Collaborative Research: Computational framework for inference of metabolic pathway activity from RNA-seq data
ABI Innovation:协作研究:从 RNA-seq 数据推断代谢途径活性的计算框架
  • 批准号:
    1564936
  • 财政年份:
    2016
  • 资助金额:
    $ 66.28万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Computational population-genetic analysis for detection of soft selective sweeps
合作研究:ABI 创新:用于检测软选择性扫描的计算群体遗传分析
  • 批准号:
    1458059
  • 财政年份:
    2015
  • 资助金额:
    $ 66.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了