ABI Innovation: A new computational framework for the prediction of microbiome dynamics
ABI Innovation:用于预测微生物组动态的新计算框架
基本信息
- 批准号:1458347
- 负责人:
- 金额:$ 49.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The dynamics of microbial communities play a fundamental role in the functioning of many natural, engineered and host-associated systems. Even though the application of DNA sequencing technologies has allowed profiling the response of these communities to external perturbations, the important knowledge resulting from this approach stems from descriptive and correlation-based analysis of these data. This strongly limits the understanding of the ecology (e.g. how the microbes interact) of these systems and, more importantly, hinders the ability to make quantitative predictions. This project will deliver new theoretical methods and related computational algorithms that, for the first time, allow forecasting microbiome dynamics that are typically constrained with sequencing surveys. This will benefit researchers working on host-associated and environmental microbiomes as it will enable them to computationally explore scenarios that are difficult to set-up experimentally. The tools developed in this project will be delivered as an open-source, freely downloadable and upgradable package, and will encourage and enable end-user contributions with the novel scripts and algorithms provided. Multiple graduate and undergraduate students will be included in the project and will benefit from interdisciplinary hands-on training in mathematical and computational biology, statistics, and microbial genetics. As the proposed methods combine concept from multi-linear regression and solution of large systems of differential equations, they will perfectly integrate with coursework in Biostatistics and Theoretical Biology at UMass Dartmouth. This research will deliver the first computational suite that allows for simulating and predicting microbiome dynamics consistent with metagenomics observations. This will be achieved by: 1) the development of new time-reverse engineering inference methods solved by a combination of regularized regression and quadratic programming for the estimation of an optimal set of model parameters, and 2) the application of computational tools for metagenome reconstruction based on modeling predictions. This research will also include the development of explicit and implicit numerical methods for the solution of large systems of differential equations to predict microbiome transient dynamics and the use of linear stability analysis to determine all possible microbiome predicted configuration states in response to different sets of perturbations. Method testing and validation against data from simple in silico and in vitro microbial ecosystem of known ecological structure will allow accuracy testing of the proposed approaches both for predicting temporal dynamics and in recovering the correct microbial interaction network in response to external perturbation. Method application (and validation) on diverse datasets will allow testing of fundamental hypotheses about the role of the intestinal microbiome in resisting colonization by foreign bacteria and in shaping host immunity. More information about this project can be found at: http://www.vannibucci.org/research-interests.html
微生物群落的动态在许多自然、工程和宿主相关系统的功能中起着重要作用。尽管DNA测序技术的应用已经允许对这些群落对外部扰动的反应进行分析,但这种方法所产生的重要知识源于对这些数据的描述性和相关性分析。这极大地限制了对这些系统的生态学(例如微生物如何相互作用)的理解,更重要的是,阻碍了进行定量预测的能力。该项目将提供新的理论方法和相关的计算算法,首次允许预测通常受测序调查限制的微生物组动态。这将有利于研究宿主相关和环境微生物组的研究人员,因为这将使他们能够通过计算探索难以通过实验建立的场景。本项目开发的工具将作为开源、可免费下载和升级的软件包交付,并将鼓励和支持终端用户对所提供的新颖脚本和算法做出贡献。多名研究生和本科生将参与该项目,并将受益于数学和计算生物学、统计学和微生物遗传学的跨学科实践培训。由于所提出的方法结合了多元线性回归的概念和大型微分方程组的解,它们将完美地与麻省大学达特茅斯分校的生物统计学和理论生物学课程相结合。这项研究将提供第一个计算套件,允许模拟和预测与宏基因组学观察一致的微生物组动力学。这将通过:1)发展新的时间逆向工程推理方法,通过正则化回归和二次规划的组合来解决最优模型参数集的估计,以及2)应用基于建模预测的宏基因组重建计算工具来实现。这项研究还将包括开发显式和隐式数值方法来解决大型微分方程系统,以预测微生物组的瞬态动力学,并使用线性稳定性分析来确定响应不同扰动集的所有可能的微生物组预测配置状态。针对已知生态结构的简单的室内和体外微生物生态系统的数据进行方法测试和验证,将允许对所提出的方法进行准确性测试,以预测时间动态和恢复响应外部扰动的正确微生物相互作用网络。对不同数据集的方法应用(和验证)将允许测试关于肠道微生物群在抵抗外来细菌定植和形成宿主免疫中的作用的基本假设。关于这个项目的更多信息可以在http://www.vannibucci.org/research-interests.html上找到
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vanni Bucci其他文献
Metabolic Network Models of the emGardnerella/em Pangenome Identify Key Interactions with the Vaginal Environment
em 加德纳菌/全基因组的代谢网络模型确定了与阴道环境的关键相互作用
- DOI:
10.1128/msystems.00689-22 - 发表时间:
2023-01-09 - 期刊:
- 影响因子:4.600
- 作者:
Lillian R. Dillard;Emma M. Glass;Amanda L. Lewis;Krystal Thomas-White;Jason A. Papin;Vanni Bucci - 通讯作者:
Vanni Bucci
A WHOLE FOOD, ANTI-INFLAMMATORY DIET ESTABLISHES A BENEFICIAL GUT MICROBIOME IN INFLAMMATORY BOWEL DISEASE PATIENTS
- DOI:
10.1053/j.gastro.2021.01.139 - 发表时间:
2021-02-01 - 期刊:
- 影响因子:
- 作者:
Barbara Olednzki;Vanni Bucci;Caitlin Cawley;Ana Maldonado-Contreras - 通讯作者:
Ana Maldonado-Contreras
Decoding cancer prognosis with deep learning: the ASD-cancer framework for tumor microenvironment analysis
利用深度学习解码癌症预后:用于肿瘤微环境分析的 ASD 癌症框架
- DOI:
10.1128/msystems.01455-24 - 发表时间:
2025-04-30 - 期刊:
- 影响因子:4.600
- 作者:
Ziyuan Huang;Yunzhan Li;Vanni Bucci;John P. Haran - 通讯作者:
John P. Haran
890: RAPID AND DURABLE COLONIZATION OF VE303 IN <em>CLOSTRIDIODES DIFFICILE</em> INFECTION (CDI) PATIENTS IS ASSOCIATED WITH CLINICAL EFFICACY: RESULTS OF THE PHASE 2 CONSORTIUM STUDY
- DOI:
10.1016/s0016-5085(22)60519-5 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Rajita Menon;Emily M. Crossette;Shakti Bhattarai;Vanni Bucci;Jeremiah Faith;Mary Ruisi;Bernat Olle;Jeffrey L. Silber;Jason Norman - 通讯作者:
Jason Norman
Multi-omic profiling a defined bacterial consortium for treatment of recurrent Clostridioides difficile infection
多组学分析一种特定的细菌群落用于治疗复发性艰难梭菌感染
- DOI:
10.1038/s41591-024-03337-4 - 发表时间:
2025-01-02 - 期刊:
- 影响因子:50.000
- 作者:
Rajita Menon;Shakti K. Bhattarai;Emily Crossette;Amanda L. Prince;Bernat Olle;Jeffrey L. Silber;Vanni Bucci;Jeremiah Faith;Jason M. Norman - 通讯作者:
Jason M. Norman
Vanni Bucci的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
New Physics in Artificial Spin Ice via Materials Innovation
通过材料创新实现人造旋转冰的新物理
- 批准号:
2419407 - 财政年份:2024
- 资助金额:
$ 49.17万 - 项目类别:
Continuing Grant
NSF Engines Development Award: Building a space-based innovation ecosystem in New Mexico (NM)
NSF 发动机发展奖:在新墨西哥州 (NM) 建立天基创新生态系统
- 批准号:
2314657 - 财政年份:2024
- 资助金额:
$ 49.17万 - 项目类别:
Cooperative Agreement
NSF Engines Development Award: Advancing a materials innovation ecosystem for manufacturing sustainability in upstate New York (NY)
NSF 发动机开发奖:推进材料创新生态系统,实现纽约州北部制造业的可持续发展
- 批准号:
2315307 - 财政年份:2024
- 资助金额:
$ 49.17万 - 项目类别:
Cooperative Agreement
Exploring sustainable growth models and innovation as a new growth strategy in declining industries
探索可持续增长模式和创新作为衰退行业的新增长战略
- 批准号:
23K01523 - 财政年份:2023
- 资助金额:
$ 49.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
BiOengineering Research Education to AcceLerate Innovation in STEM
生物工程研究教育加速 STEM 创新
- 批准号:
10652133 - 财政年份:2023
- 资助金额:
$ 49.17万 - 项目类别:
AnVIL Clinical Environment for Innovation and Translation (ACE-IT)
AnVIL 创新与转化临床环境 (ACE-IT)
- 批准号:
10747551 - 财政年份:2023
- 资助金额:
$ 49.17万 - 项目类别:
New GORDON RESEARCH CONFERENCE: Advanced Cell and Tissue Biomanufacturing: Technology Development and Innovation through Convergence
新戈登研究会议:先进细胞和组织生物制造:通过融合进行技术开发和创新
- 批准号:
10682943 - 财政年份:2023
- 资助金额:
$ 49.17万 - 项目类别:
The Center for Innovation and Translation of Point of Care Technologies for Equitable Cancer Care (CITEC)
公平癌症护理护理点技术创新与转化中心 (CITEC)
- 批准号:
10715740 - 财政年份:2023
- 资助金额:
$ 49.17万 - 项目类别:
New Physics in Artificial Spin Ice via Materials Innovation
通过材料创新实现人造旋转冰的新物理学
- 批准号:
2310275 - 财政年份:2023
- 资助金额:
$ 49.17万 - 项目类别:
Continuing Grant
Targeted Infusion Project: Curricular Innovation of Microbiology and Genetics Laboratories - New Strategies for Biology Student Success
定向输注项目:微生物学和遗传学实验室的课程创新——生物学学生成功的新策略
- 批准号:
2306045 - 财政年份:2023
- 资助金额:
$ 49.17万 - 项目类别:
Standard Grant