Hyperbolic Geometry and Minimal Surfaces
双曲几何和最小曲面
基本信息
- 批准号:1460241
- 负责人:
- 金额:$ 2.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-15 至 2017-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The conference Hyperbolic Geometry and Minimal Surfaces will be held at the Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, Brazil, January 4-10, 2015 and will consist of a five-day lecture series given by experts in the fields of hyperbolic geometry and minimal surfaces. The goal of the conference is to educate participants in current research topics and to provide a forum for collaboration on problems at the intersection of the two fields. Through this interaction, the conference seeks to produce new directions of research in geometry related to hyperbolic geometry and minimal surfaces, and provide research development for junior researchers and graduate students through interaction with leading experts in the fields. The conference will also provide a venue for mathematicians from North, Central and South America to gather to collaborate and share ideas. By helping develop and broaden the research program of attendees, both junior and senior, this will further strengthen and broaden the development of mathematics education in their home institutions and countries. The purpose of the workshop is to investigate problems at the intersection of hyperbolic geometry and minimal surfaces. Hyperbolic geometry has seen great advances inrecent years on major problems in the field. In particular for hyperbolic three-manifolds, the geometrization conjecture, ending lamination conjecture, tameness, virtual Haken conjecture, and virtual fibering conjecture, have all been proved. Incompressible surfaces and minimal surfaces played an important role in this work. By focusing the conference on hyperbolic geometry an minimal surfaces, the expectation is to continue the development of this interaction between the two areas. Topics will include, Minimal surfaces in hyperbolic manifolds, Min-max techniques in hyperbolic geometry, and Systoles in expanding families of hyperbolic manifolds. The workshop website is located at http://www.impa.br/opencms/en/eventos/store/evento_1501
双曲几何和极小曲面会议将于2015年1月4日至10日在巴西里约热内卢国家马特梅蒂卡学院(IMPA)举行,由双曲几何和极小曲面领域的专家进行为期五天的系列讲座。会议的目标是就当前的研究主题对与会者进行教育,并为在这两个领域的交叉问题上进行合作提供一个论坛。通过这种互动,会议寻求产生与双曲几何和极小曲面相关的几何研究的新方向,并通过与该领域的领先专家互动,为初级研究人员和研究生提供研究发展。会议还将为来自北美、中美洲和南美洲的数学家提供一个聚集在一起合作和分享想法的场所。通过帮助发展和拓宽初级和高级与会者的研究计划,这将进一步加强和拓宽其本国机构和国家的数学教育发展。本课程的目的是研究双曲几何与极小曲面相交的问题。近年来,双曲几何在该领域的重大问题上取得了很大的进展。特别是对于双曲三维流形,证明了几何猜想、结束分层猜想、驯服猜想、虚Haken猜想和虚纤化猜想。不可压缩曲面和极小曲面在这项工作中扮演了重要的角色。通过将会议的重点放在双曲几何和极小曲面上,人们期望继续发展这两个领域之间的相互作用。主题将包括,双曲流形中的最小曲面,双曲几何中的最小-最大技巧,以及双曲流形扩张族中的脉动。研讨会的网站位于http://www.impa.br/opencms/en/eventos/store/evento_1501
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Bridgeman其他文献
The pressure metric for Anosov representations
- DOI:
10.1007/s00039-015-0333-8 - 发表时间:
2015-06-20 - 期刊:
- 影响因子:2.500
- 作者:
Martin Bridgeman;Richard Canary;François Labourie;Andres Sambarino - 通讯作者:
Andres Sambarino
Variation of holonomy for projective structures and an application to drilling hyperbolic 3-manifolds
- DOI:
10.1007/s10711-024-00908-0 - 发表时间:
2024-04-03 - 期刊:
- 影响因子:0.500
- 作者:
Martin Bridgeman;Kenneth Bromberg - 通讯作者:
Kenneth Bromberg
emL/emsup2/sup-bounds for drilling short geodesics in convex co-compact hyperbolic 3-manifolds
凸共紧双曲 3 维流形中短测地线钻探的 emL/emsup2/sup 界
- DOI:
10.1016/j.aim.2024.109804 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:1.500
- 作者:
Martin Bridgeman;Kenneth Bromberg - 通讯作者:
Kenneth Bromberg
Martin Bridgeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Bridgeman', 18)}}的其他基金
Conference: Ventotene International Workshops VI, GRAZP: Groups and Rigidity Around the Zimmer Program
会议:Ventotene 国际研讨会 VI、GRAZP:围绕 Zimmer 计划的团体和刚性
- 批准号:
2310462 - 财政年份:2023
- 资助金额:
$ 2.97万 - 项目类别:
Standard Grant
Weil-Petersson Geometry, Renormalized Volume and Higher Teichmuller Theory
韦尔-彼得森几何、重整体积和高等泰希米勒理论
- 批准号:
2005498 - 财政年份:2020
- 资助金额:
$ 2.97万 - 项目类别:
Standard Grant
International Workshop on Quasi-Isometries and Groups: Rigidity and Classification
准等轴测和群国际研讨会:刚性和分类
- 批准号:
1910865 - 财政年份:2019
- 资助金额:
$ 2.97万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Geometric Structures on Higher Teichmuller Spaces
FRG:协作研究:更高 Teichmuller 空间上的几何结构
- 批准号:
1564410 - 财政年份:2016
- 资助金额:
$ 2.97万 - 项目类别:
Continuing Grant
Metrics, Measures, and Identities on Moduli Spaces
模空间上的度量、测度和恒等式
- 批准号:
1500545 - 财政年份:2015
- 资助金额:
$ 2.97万 - 项目类别:
Continuing Grant
The William Rowan Hamilton Geometry and Topology Workshop; Dublin, Ireland, August 25 - 29, 2015
威廉·罗文·汉密尔顿几何和拓扑研讨会;
- 批准号:
1546685 - 财政年份:2015
- 资助金额:
$ 2.97万 - 项目类别:
Standard Grant
The 10th William Rowan Hamilton Geometry and Topology Workshop, August 26 - 30, 2014
第 10 届 William Rowan Hamilton 几何与拓扑研讨会,2014 年 8 月 26 - 30 日
- 批准号:
1416832 - 财政年份:2014
- 资助金额:
$ 2.97万 - 项目类别:
Standard Grant
William Rowan Hamilton Geometry and Topology Workshop
威廉·罗文·汉密尔顿几何与拓扑研讨会
- 批准号:
1311134 - 财政年份:2013
- 资助金额:
$ 2.97万 - 项目类别:
Standard Grant
William Rowan Hamilton Geometry and Topology Workshop
威廉·罗文·汉密尔顿几何与拓扑研讨会
- 批准号:
1239001 - 财政年份:2012
- 资助金额:
$ 2.97万 - 项目类别:
Standard Grant
William Rowan Hamilton Geometry and Topology Workshop
威廉·罗文·汉密尔顿几何与拓扑研讨会
- 批准号:
1136511 - 财政年份:2011
- 资助金额:
$ 2.97万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Differential Geometry and Minimal Surfaces
微分几何和最小曲面
- 批准号:
2305255 - 财政年份:2023
- 资助金额:
$ 2.97万 - 项目类别:
Standard Grant
Minimal submanifolds in Riemannian geometry
黎曼几何中的最小子流形
- 批准号:
RGPIN-2020-04225 - 财政年份:2022
- 资助金额:
$ 2.97万 - 项目类别:
Discovery Grants Program - Individual
Minimal Filling Estimates in Riemannian Geometry
黎曼几何中的最小填充估计
- 批准号:
567948-2022 - 财政年份:2022
- 资助金额:
$ 2.97万 - 项目类别:
Postgraduate Scholarships - Doctoral
Minimal submanifolds in Riemannian geometry
黎曼几何中的最小子流形
- 批准号:
RGPIN-2020-04225 - 财政年份:2021
- 资助金额:
$ 2.97万 - 项目类别:
Discovery Grants Program - Individual
Minimal submanifolds in Riemannian geometry
黎曼几何中的最小子流形
- 批准号:
RGPIN-2020-04225 - 财政年份:2020
- 资助金额:
$ 2.97万 - 项目类别:
Discovery Grants Program - Individual
Differential Geometry and Minimal Surfaces
微分几何和最小曲面
- 批准号:
2005468 - 财政年份:2020
- 资助金额:
$ 2.97万 - 项目类别:
Continuing Grant
Minimal Submanifolds in Riemannian Geometry
黎曼几何中的最小子流形
- 批准号:
RGPIN-2015-04436 - 财政年份:2019
- 资助金额:
$ 2.97万 - 项目类别:
Discovery Grants Program - Individual
Large Scale Geometry of Scalar Curvature and Minimal Surfaces
标量曲率和最小曲面的大尺度几何
- 批准号:
2016403 - 财政年份:2019
- 资助金额:
$ 2.97万 - 项目类别:
Continuing Grant
Minimal Surfaces in Geometry and Topology
几何和拓扑中的最小曲面
- 批准号:
1906385 - 财政年份:2019
- 资助金额:
$ 2.97万 - 项目类别:
Continuing Grant
From pine cones to minimal surfaces: the geometry and mechanics of morphing bilayers
从松果到最小表面:变形双层的几何和力学
- 批准号:
2123263 - 财政年份:2018
- 资助金额:
$ 2.97万 - 项目类别:
Studentship