Metrics, Measures, and Identities on Moduli Spaces
模空间上的度量、测度和恒等式
基本信息
- 批准号:1500545
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI studies the interconnections between the fields of geometry, physics, dynamics, statistics and number theory. A geometry on a space is a means of measuring distance in the space and can be thought of as giving the space a shape. One approach to studying the geometry on a space is to consider the geodesic flow; this is an object that generalizes the notion of a straight line to spaces that are curved. By studying the properties of this object much can be discovered about the geometry itself. For example, the question of how many flow paths close up is related to the distribution of prime numbers. Often different geometries can be placed on a space and thus one obtains a space of shapes. A natural question to ask is if this space of shapes can be given a nice shape itself. The PI proposes to study these geometries on the space of geometries and investigate their properties. The PI will continue his commitment to both undergraduate and graduate education. The PI will mentor graduate students and postdoctoral assistant professors on research related to the project. The PI will also give research talks, expository talks, minicourses and lecture series on material related to the proposal as well as organize conferences. The research plan of the PI centers around the use of certain geometric measures to define structures on moduli spaces and representation varieties. Such measures include the Hausdorff measure on the limit set of a Kleinian group, geodesic currents, the Patterson-Sullivan measure of a Kleinian group, equilibrium measures defined using Themodynamics associated with representations of hyperbolic groups, and push-forwards of volume measures by certain geometrically defined functions. One area of study is Higher Teichmuller Theory which is the study of representation spaces of hyperbolic groups into semi-simple Lie groups. These are generalizations of the classical Teichmuller space. Using Thermodynamics, the PI and collaborators define a Pressure geometry on this Higher Teichmuller space. space. The PI proposes to study the geometric property of this metric including its curvature, metric completion, and isometry group. Another area of proposed study is geometric identities; these are equations that hold on a moduli space of geometries. The PI and collaborators derive such identities by studying the statistical properties of the geodesic flow on a hyperbolic manifold. The PI proposes to study these identities and their relation to other known identities.
PI研究几何、物理、动力学、统计学和数论等领域之间的相互联系。空间上的几何图形是测量空间距离的一种手段,可以被认为是给空间一个形状。研究空间几何的一种方法是考虑测地线流;这是一个将直线的概念推广到弯曲空间的对象。通过研究这个物体的性质,我们可以发现很多关于几何本身的东西。例如,有多少流动路径闭合的问题与素数的分布有关。通常,不同的几何形状可以放置在一个空间上,从而获得一个形状的空间。一个自然的问题是,这个形状空间是否可以被赋予一个好的形状本身。PI建议在几何空间上研究这些几何,并研究它们的性质。PI将继续致力于本科生和研究生教育。PI将指导研究生和博士后助理教授与该项目相关的研究。国际和平协会还将就与提案有关的材料举行研究讲座、说明性演讲、迷你课程和系列讲座,并组织会议。PI的研究计划围绕着使用某些几何度量来定义模空间上的结构和表示簇。这些度量包括Klein群的极限集上的Hausdorff度量、测地线流、Klein群的Patterson-Sullivan度量、利用与双曲群表示有关的热力学定义的平衡度量、以及通过某些几何定义的函数的体积度量的前移。其中一个研究领域是高阶TeichMuller理论,它研究双曲群到半单李群的表示空间。这些都是经典TeichMuller空间的推广。利用热力学,PI和合作者在这个更高的TeichMuller空间上定义了一个压力几何。太空。PI建议研究这一度量的几何性质,包括它的曲率、度量完备性和等距群。另一个被提议研究的领域是几何恒等式;这些方程建立在几何的模空间上。PI和合作者通过研究双曲流形上测地线流的统计性质得出了这样的恒等式。PI建议研究这些身份及其与其他已知身份的关系。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simple length rigidity for Kleinian surface groups and applications
克莱因表面组和应用的简单长度刚度
- DOI:10.4171/cmh/422
- 发表时间:2017
- 期刊:
- 影响因子:0.9
- 作者:Bridgeman, Martin;Canary, Richard
- 通讯作者:Canary, Richard
Simple root flows for Hitchin representations
Hitchin 表示的简单根流
- DOI:10.1007/s10711-017-0305-2
- 发表时间:2018
- 期刊:
- 影响因子:0.5
- 作者:Bridgeman, Martin;Canary, Richard;Labourie, François;Sambarino, Andres
- 通讯作者:Sambarino, Andres
Renormalized volume and the volume of the convex core
重正化体积和凸核体积
- DOI:10.5802/aif.3130
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Bridgeman, Martin;Canary, Richard
- 通讯作者:Canary, Richard
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Bridgeman其他文献
The pressure metric for Anosov representations
- DOI:
10.1007/s00039-015-0333-8 - 发表时间:
2015-06-20 - 期刊:
- 影响因子:2.500
- 作者:
Martin Bridgeman;Richard Canary;François Labourie;Andres Sambarino - 通讯作者:
Andres Sambarino
Variation of holonomy for projective structures and an application to drilling hyperbolic 3-manifolds
- DOI:
10.1007/s10711-024-00908-0 - 发表时间:
2024-04-03 - 期刊:
- 影响因子:0.500
- 作者:
Martin Bridgeman;Kenneth Bromberg - 通讯作者:
Kenneth Bromberg
emL/emsup2/sup-bounds for drilling short geodesics in convex co-compact hyperbolic 3-manifolds
凸共紧双曲 3 维流形中短测地线钻探的 emL/emsup2/sup 界
- DOI:
10.1016/j.aim.2024.109804 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:1.500
- 作者:
Martin Bridgeman;Kenneth Bromberg - 通讯作者:
Kenneth Bromberg
Martin Bridgeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Bridgeman', 18)}}的其他基金
Conference: Ventotene International Workshops VI, GRAZP: Groups and Rigidity Around the Zimmer Program
会议:Ventotene 国际研讨会 VI、GRAZP:围绕 Zimmer 计划的团体和刚性
- 批准号:
2310462 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Weil-Petersson Geometry, Renormalized Volume and Higher Teichmuller Theory
韦尔-彼得森几何、重整体积和高等泰希米勒理论
- 批准号:
2005498 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
International Workshop on Quasi-Isometries and Groups: Rigidity and Classification
准等轴测和群国际研讨会:刚性和分类
- 批准号:
1910865 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Geometric Structures on Higher Teichmuller Spaces
FRG:协作研究:更高 Teichmuller 空间上的几何结构
- 批准号:
1564410 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Hyperbolic Geometry and Minimal Surfaces
双曲几何和最小曲面
- 批准号:
1460241 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
The William Rowan Hamilton Geometry and Topology Workshop; Dublin, Ireland, August 25 - 29, 2015
威廉·罗文·汉密尔顿几何和拓扑研讨会;
- 批准号:
1546685 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
The 10th William Rowan Hamilton Geometry and Topology Workshop, August 26 - 30, 2014
第 10 届 William Rowan Hamilton 几何与拓扑研讨会,2014 年 8 月 26 - 30 日
- 批准号:
1416832 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
William Rowan Hamilton Geometry and Topology Workshop
威廉·罗文·汉密尔顿几何与拓扑研讨会
- 批准号:
1311134 - 财政年份:2013
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
William Rowan Hamilton Geometry and Topology Workshop
威廉·罗文·汉密尔顿几何与拓扑研讨会
- 批准号:
1239001 - 财政年份:2012
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
William Rowan Hamilton Geometry and Topology Workshop
威廉·罗文·汉密尔顿几何与拓扑研讨会
- 批准号:
1136511 - 财政年份:2011
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:
2339898 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
- 批准号:
2400191 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Non-tariff measures and the Global Value Chains
非关税措施和全球价值链
- 批准号:
24K16361 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Information-Theoretic Measures for Fairness and Explainability in High-Stakes Applications
职业:高风险应用中公平性和可解释性的信息论测量
- 批准号:
2340006 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Conference: Geometry of Measures and Free Boundaries
会议:测量几何和自由边界
- 批准号:
2403698 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Estimating Risk Measures, with Applications to Finance and Nuclear Safety
评估风险措施,并应用于金融和核安全
- 批准号:
2345330 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Our health counts: population-based measures of urban Indigenous health determinants, health status, and health care access across two cities in New Brunswick
我们的健康很重要:新不伦瑞克省两个城市的城市土著健康决定因素、健康状况和医疗保健获取情况的基于人口的衡量标准
- 批准号:
489076 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Operating Grants
Primary care quality for older adults: practice-based quality measures derived from a RAND/UCLA appropriateness method study
老年人初级保健质量:源自兰德/加州大学洛杉矶分校适当性方法研究的基于实践的质量衡量标准
- 批准号:
495174 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Engaging Patient and Caregivers in Using Patient-reported Outcomes Measures in Pediatric Clinical Care for Asthma
让患者和护理人员参与儿科哮喘儿科临床护理中患者报告的结果测量
- 批准号:
495593 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Development and validation of a composite measure of physical function using a battery of performance-based measures: A longitudinal analyses of the Canadian Longitudinal Study on Aging
使用一系列基于表现的测量方法开发和验证身体机能的综合测量方法:加拿大老龄化纵向研究的纵向分析
- 批准号:
499193 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Operating Grants