FRG: Collaborative Research: Geometric Structures on Higher Teichmuller Spaces
FRG:协作研究:更高 Teichmuller 空间上的几何结构
基本信息
- 批准号:1564410
- 负责人:
- 金额:$ 24.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A surface is a space which looks locally like the 2-dimensional plane, e.g. the surface of a basketball or a pretzel. Surfaces arise naturally in many scientific fields. A geometric structure is a way of measuring distances and angles on a surface or more complicated object. Studying spaces of geometric structures (or shapes) on a fixed object gives further information about their nature. The classical Teichmuller theory studies a space which parametrizes certain geometric structures (of constant curvature) on a fixed surface. Teichmuller theory has impacted diverse areas in mathematics, including algebraic geometry, complex analysis, low-dimensional topology, and dynamics, as well as theoretical physics through its connections with string theory. A metric on Teichmuller space is a way of measuring the distance, or difference, between two such geometric structures. The PIs plan to study metrics on a generalization of this theory called Higher Teichmuller Theory. Higher Teichmuller spaces may be viewed as deformation spaces of geometric structures on higher-dimensional spaces. It shares some of the nice properties of the classical theory and has become a very active field of research. The PIs will mentor graduate students who will be engaged in aspects of the project. They will also run a program which helps science and engineering students from low-resource high schools transition to college studies. Higher Teichmuller theory studies spaces of "geometric" representations of a hyperbolic group into a semi-simple Lie group. The main goal is to develop a theory which shares the richness, beauty and versatility of classical Teichmuller theory. The Higher theory has exploded in popularity because of the interactions it fosters between the subjects of geometric topology, real and complex differential geometry, Lie theory, algebraic geometry, string theory, and dynamics. Bridgeman, Canary, Labourie and Sambarino used thermodynamic formalism to construct a pressure metric on many higher Teichmuller spaces which is motivated by Thurston's definition of the Weil-Petersson metric on Teichmuller space (and its reformulations by Bonahon and McMullen). In the special case of the Hitchin component, the pressure metric is a mapping class group invariant, analytic Riemannian metric whose restriction to the Fuchsian locus is a multiple of the Weil-Petersson metric. Wolf developed an analogous approach to the Weil-Petersson metric, and has results on the isometry group and curvature of the Weil-Petersson metric, degeneration of hyperbolic structures, and on harmonic maps (Hitchin equations) approaches to Teichmuller theory. Wentworth has worked on the pressure metric, Weil-Petersson geometry, Higgs bundles and harmonic maps. The PIs together propose to study the isometry group, curvature and metric completion of both the pressure metric and variants on Hitchin components and quasifuchsian spaces, aiming to understand the pressure metric on general higher Teichmuller spaces.
表面是一个局部看起来像二维平面的空间,例如篮球或椒盐卷饼的表面。表面在许多科学领域自然出现。几何结构是一种测量表面或更复杂物体上的距离和角度的方法。研究一个固定物体上的几何结构(或形状)空间,可以进一步了解它们的性质。经典的Teichmuller理论研究的是一个空间,它在一个固定的表面上参数化了某些(曲率恒定的)几何结构。Teichmuller理论通过与弦理论的联系影响了数学的各个领域,包括代数几何、复杂分析、低维拓扑和动力学,以及理论物理。Teichmuller空间上的度量是测量两个这样的几何结构之间的距离或差异的一种方法。pi计划在该理论的推广基础上研究度量,该理论被称为高等泰希穆勒理论。高维空间可以看作几何结构在高维空间上的变形空间。它具有经典理论的一些优良性质,并已成为一个非常活跃的研究领域。pi将指导研究生谁将参与项目的各个方面。他们还将开展一个项目,帮助资源匮乏的高中理工科学生过渡到大学学习。高等Teichmuller理论研究双曲群成半单李群的“几何”表示空间。主要目标是发展一种理论,它分享了经典Teichmuller理论的丰富性,美和多功能性。高等理论之所以大受欢迎,是因为它促进了几何拓扑学、实数和复杂微分几何、李论、代数几何、弦理论和动力学等学科之间的相互作用。Bridgeman, Canary, Labourie和Sambarino使用热力学形式主义在许多更高的Teichmuller空间上构建了一个压力度量,这是由Thurston对Teichmuller空间上的Weil-Petersson度量的定义(以及Bonahon和McMullen的重新表述)所激发的。在Hitchin分量的特殊情况下,压力度规是一个映射类群不变量,解析黎曼度规,其对Fuchsian轨迹的限制是Weil-Petersson度规的倍数。Wolf开发了一种类似于Weil-Petersson度规的方法,并在Weil-Petersson度规的等距群和曲率、双曲结构的退化以及Teichmuller理论的调和映射(Hitchin方程)方法上取得了成果。温特沃斯研究过压力度规、韦尔-彼得森几何、希格斯束和谐波图。这些pi共同提出研究Hitchin分量和准fuchsian空间上的压力度量及其变体的等距群、曲率和度量补全,旨在理解一般高Teichmuller空间上的压力度量。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simple length rigidity for Hitchin representations
希钦表示的简单长度刚性
- DOI:10.1016/j.aim.2019.106901
- 发表时间:2020
- 期刊:
- 影响因子:1.7
- 作者:Bridgeman, Martin;Canary, Richard;Labourie, François
- 通讯作者:Labourie, François
Hessian of Hausdorff dimension on purely imaginary directions
- DOI:10.1112/blms.12612
- 发表时间:2020-10
- 期刊:
- 影响因子:0.9
- 作者:M. Bridgeman;Béatrice Pozzetti;Andr'es Sambarino;Anna Wienhard
- 通讯作者:M. Bridgeman;Béatrice Pozzetti;Andr'es Sambarino;Anna Wienhard
Schwarzian derivatives, projective structures, and the Weil–Petersson gradient flow for renormalized volume
施瓦茨导数、射影结构和重正化体积的 Weil-Petersson 梯度流
- DOI:10.1215/00127094-2018-0061
- 发表时间:2019
- 期刊:
- 影响因子:2.5
- 作者:Bridgeman, Martin;Brock, Jeffrey;Bromberg, Kenneth
- 通讯作者:Bromberg, Kenneth
Simple length rigidity for Kleinian surface groups and applications
克莱因表面组和应用的简单长度刚度
- DOI:10.4171/cmh/422
- 发表时间:2017
- 期刊:
- 影响因子:0.9
- 作者:Bridgeman, Martin;Canary, Richard
- 通讯作者:Canary, Richard
An introduction to pressure metrics for higher Teichmüller spaces
更高 Teichmüller 空间的压力指标简介
- DOI:10.1017/etds.2016.111
- 发表时间:2018
- 期刊:
- 影响因子:0.9
- 作者:BRIDGEMAN, MARTIN;CANARY, RICHARD;SAMBARINO, ANDRÉS
- 通讯作者:SAMBARINO, ANDRÉS
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Bridgeman其他文献
The pressure metric for Anosov representations
- DOI:
10.1007/s00039-015-0333-8 - 发表时间:
2015-06-20 - 期刊:
- 影响因子:2.500
- 作者:
Martin Bridgeman;Richard Canary;François Labourie;Andres Sambarino - 通讯作者:
Andres Sambarino
Variation of holonomy for projective structures and an application to drilling hyperbolic 3-manifolds
- DOI:
10.1007/s10711-024-00908-0 - 发表时间:
2024-04-03 - 期刊:
- 影响因子:0.500
- 作者:
Martin Bridgeman;Kenneth Bromberg - 通讯作者:
Kenneth Bromberg
emL/emsup2/sup-bounds for drilling short geodesics in convex co-compact hyperbolic 3-manifolds
凸共紧双曲 3 维流形中短测地线钻探的 emL/emsup2/sup 界
- DOI:
10.1016/j.aim.2024.109804 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:1.500
- 作者:
Martin Bridgeman;Kenneth Bromberg - 通讯作者:
Kenneth Bromberg
Martin Bridgeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Bridgeman', 18)}}的其他基金
Conference: Ventotene International Workshops VI, GRAZP: Groups and Rigidity Around the Zimmer Program
会议:Ventotene 国际研讨会 VI、GRAZP:围绕 Zimmer 计划的团体和刚性
- 批准号:
2310462 - 财政年份:2023
- 资助金额:
$ 24.44万 - 项目类别:
Standard Grant
Weil-Petersson Geometry, Renormalized Volume and Higher Teichmuller Theory
韦尔-彼得森几何、重整体积和高等泰希米勒理论
- 批准号:
2005498 - 财政年份:2020
- 资助金额:
$ 24.44万 - 项目类别:
Standard Grant
International Workshop on Quasi-Isometries and Groups: Rigidity and Classification
准等轴测和群国际研讨会:刚性和分类
- 批准号:
1910865 - 财政年份:2019
- 资助金额:
$ 24.44万 - 项目类别:
Standard Grant
Hyperbolic Geometry and Minimal Surfaces
双曲几何和最小曲面
- 批准号:
1460241 - 财政年份:2015
- 资助金额:
$ 24.44万 - 项目类别:
Standard Grant
Metrics, Measures, and Identities on Moduli Spaces
模空间上的度量、测度和恒等式
- 批准号:
1500545 - 财政年份:2015
- 资助金额:
$ 24.44万 - 项目类别:
Continuing Grant
The William Rowan Hamilton Geometry and Topology Workshop; Dublin, Ireland, August 25 - 29, 2015
威廉·罗文·汉密尔顿几何和拓扑研讨会;
- 批准号:
1546685 - 财政年份:2015
- 资助金额:
$ 24.44万 - 项目类别:
Standard Grant
The 10th William Rowan Hamilton Geometry and Topology Workshop, August 26 - 30, 2014
第 10 届 William Rowan Hamilton 几何与拓扑研讨会,2014 年 8 月 26 - 30 日
- 批准号:
1416832 - 财政年份:2014
- 资助金额:
$ 24.44万 - 项目类别:
Standard Grant
William Rowan Hamilton Geometry and Topology Workshop
威廉·罗文·汉密尔顿几何与拓扑研讨会
- 批准号:
1311134 - 财政年份:2013
- 资助金额:
$ 24.44万 - 项目类别:
Standard Grant
William Rowan Hamilton Geometry and Topology Workshop
威廉·罗文·汉密尔顿几何与拓扑研讨会
- 批准号:
1239001 - 财政年份:2012
- 资助金额:
$ 24.44万 - 项目类别:
Standard Grant
William Rowan Hamilton Geometry and Topology Workshop
威廉·罗文·汉密尔顿几何与拓扑研讨会
- 批准号:
1136511 - 财政年份:2011
- 资助金额:
$ 24.44万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 24.44万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 24.44万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 24.44万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 24.44万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 24.44万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 24.44万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 24.44万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 24.44万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 24.44万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 24.44万 - 项目类别:
Continuing Grant