Engineering Membrane Platforms Based on Active Transporter Architectures
基于主动转运体架构的工程膜平台
基本信息
- 批准号:1460922
- 负责人:
- 金额:$ 28.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2018-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1403750HindsUniversity of KentuckyCurrent membrane technology is based primarily on pore size and chemical functionality. Naturally occurring protein channels far exceed any man-made engineering pores with selectivities exceeding parts per million and flow rates 10,000 fold faster. The PI proposes to imitate natural protein channel structures and nanometer scale electrode geometries to increase flow. If successful, this could potentially revolutionize membrane function by providing a solution to the long standing trade-off between high chemical selectivity and high processing rate. Two promising material platforms are Carbon Nanotube (CNT) Membranes and nm-scale electrode multilayers on anodized aluminum oxide (AAO). There are three key attributes unique to Carbon Nanotube (CNT) membranes: 1) atomically flat hydrophobic graphitic core that induces a near perfect slip layer for dramatic fluid flow 2) functional chemistry by necessity is at the cut entrances to the CNT cores for gatekeeper activity and 3) CNTs are conductive allowing for electrochemical transformation and application of electric field. Needed is a method to generate fluid flow (with chemical interaction or selectivity) in the entrance to CNT pores and have the plug flow rapidly transfer down the fast CNT core. Electro-osmotic pumping is found to have similar flow enhancements as pressure driven pumping and can accelerate selectively bound species within plug flow Peptide libraries allow the screening of 109 peptide combinations to find highly selective affinity chemistry far beyond what is achieved with simple coordination chemistry. However, strong binding coefficients result in kinetics too slow for monolayer-based pumping cycles. The PIs have found that modest voltages are sufficient to release cationic bound rare-earth ions, from high surface area conductive AAO surface. Multilayer electrodes allow for pumping cycles to direct strong electric fields in a high porosity AAO system. This allows for a very general separation system based on rapid cycles of binding targets to specific peptides at the pore entrances followed by electrostatic release pumping across the membrane. Due to the large breadth of peptide affinity libraries, this concept is applied to a large number of commercially relevant applications in energy storage, energy processing, chemical sensors, selective pharmaceutical separations, drug delivery and water purification. Support of this research area will enable many educational opportunities related to novel nanometer scale materials fabrication, characterization and application into separations science and engineering.
当前的膜技术主要基于孔径和化学功能。天然存在的蛋白质通道远远超过任何人工工程孔隙,其选择性超过百万分之一,流动速度快1万倍。PI建议模仿天然蛋白质通道结构和纳米级电极几何形状来增加流量。如果成功,这可能会彻底改变膜的功能,为长期存在的高化学选择性和高处理速率之间的权衡提供解决方案。两个很有前途的材料平台是碳纳米管(CNT)膜和纳米级电极多层阳极氧化铝(AAO)。碳纳米管(CNT)膜有三个独特的关键属性:1)原子扁平的疏水石墨核,可诱导近乎完美的滑动层,用于剧烈的流体流动;2)功能化学必须在碳纳米管核的切割入口处进行看门人活动;3)碳纳米管具有导电性,允许电化学转化和电场应用。需要一种在碳纳米管孔入口产生流体流动(具有化学相互作用或选择性)的方法,并使塞流快速向下转移到快速碳纳米管核心。电渗透泵浦被发现具有与压力驱动泵浦相似的流动增强作用,并且可以加速塞流中选择性结合的物种。肽库允许筛选109个肽组合,找到高度选择性的亲和化学,远远超过简单的配位化学。然而,对于基于单层的泵送循环,强结合系数导致动力学太慢。pi发现适度的电压足以从高表面积导电AAO表面释放阳离子结合的稀土离子。多层电极允许泵送循环来引导高孔隙率AAO体系中的强电场。这允许一个非常通用的分离系统基于结合目标到特定的肽在孔入口的快速循环,然后静电释放泵穿过膜。由于多肽亲和文库的广度很大,这一概念被应用于能量存储、能量处理、化学传感器、选择性药物分离、药物输送和水净化等大量商业相关应用。支持这一研究领域将提供许多与新型纳米尺度材料制造、表征及其在分离科学和工程中的应用相关的教育机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Hinds其他文献
Structure and function of natural proteins for water transport: general discussion.
水运输天然蛋白质的结构和功能:一般讨论。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:3.4
- 作者:
M. Baaden;M. Barboiu;R. Bill;S. Casanova;Chun;M. Conner;V. Freger;B. Gong;Artur Góra;Bruce Hinds;Andreas Horner;G. Hummer;Manish Kumar;M. Lokesh;S. Mitra;A. Noy;P. Pohl;A. Sadet;M. Sansom;S. Törnroth;Harish Vashisth - 通讯作者:
Harish Vashisth
A blueprint for a nanoscale pump
纳米级泵的蓝图
- DOI:
10.1038/nnano.2007.354 - 发表时间:
2007-10-21 - 期刊:
- 影响因子:34.900
- 作者:
Bruce Hinds - 通讯作者:
Bruce Hinds
Bruce Hinds的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Hinds', 18)}}的其他基金
Engineering Membrane Platforms Based on Active Transporter Architectures
基于主动转运体架构的工程膜平台
- 批准号:
1403750 - 财政年份:2014
- 资助金额:
$ 28.63万 - 项目类别:
Standard Grant
CAREER: Aligned Carbon Nanotube Composite Array as Permeable Membrane for Selective Chemical Separations and Sensing
职业:对齐碳纳米管复合阵列作为选择性化学分离和传感的渗透膜
- 批准号:
0348544 - 财政年份:2004
- 资助金额:
$ 28.63万 - 项目类别:
Standard Grant
Japan JSPS Program: Novel Single Electron Coulomb Blockade Transistor as a Probe in the Study of Si02/Si Interface
日本JSPS计划:新型单电子库仑封锁晶体管作为Si02/Si界面研究的探针
- 批准号:
9724743 - 财政年份:1998
- 资助金额:
$ 28.63万 - 项目类别:
Fellowship Award
Japan JSPS Program: Novel Single Electron Coulomb Blockade Transistor as a Proble in the Study of Si02/Si Interface
日本JSPS计划:新型单电子库仑封锁晶体管作为Si02/Si界面研究中的问题
- 批准号:
9813040 - 财政年份:1998
- 资助金额:
$ 28.63万 - 项目类别:
Fellowship Award
相似海外基金
Engineering designer probes for imaging membrane potential: novel parts, architectures, and platforms
工程设计师探索膜电位成像:新颖的部件、架构和平台
- 批准号:
10112904 - 财政年份:2019
- 资助金额:
$ 28.63万 - 项目类别:
Engineering designer probes for imaging membrane potential: novel parts, architectures, and platforms
工程设计师探索膜电位成像:新颖的部件、架构和平台
- 批准号:
9762339 - 财政年份:2019
- 资助金额:
$ 28.63万 - 项目类别:
Engineering designer probes for imaging membrane potential: novel parts, architectures, and platforms
工程设计师探索膜电位成像:新颖的部件、架构和平台
- 批准号:
10378750 - 财政年份:2019
- 资助金额:
$ 28.63万 - 项目类别:
Membrane platforms in regulated secretion from endothelial cells (A04)
内皮细胞分泌调节的膜平台 (A04)
- 批准号:
394342108 - 财政年份:2018
- 资助金额:
$ 28.63万 - 项目类别:
Collaborative Research Centres
Membrane platforms in regulated secretion from endothelial cells
内皮细胞分泌调节的膜平台
- 批准号:
316697282 - 财政年份:2016
- 资助金额:
$ 28.63万 - 项目类别:
Research Grants
Engineering Membrane Platforms Based on Active Transporter Architectures
基于主动转运体架构的工程膜平台
- 批准号:
1403750 - 财政年份:2014
- 资助金额:
$ 28.63万 - 项目类别:
Standard Grant
Development of novel platforms for membrane protein analysis
开发膜蛋白分析新平台
- 批准号:
25650053 - 财政年份:2013
- 资助金额:
$ 28.63万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Creating Platforms for the Proteomics and Membrane Proteins
为蛋白质组学和膜蛋白创建平台
- 批准号:
8000155 - 财政年份:2010
- 资助金额:
$ 28.63万 - 项目类别:
Creating Platforms for the Proteomics and Membrane Proteins
为蛋白质组学和膜蛋白创建平台
- 批准号:
7994169 - 财政年份:2004
- 资助金额:
$ 28.63万 - 项目类别:
Membrane Raft Platforms in Inflammasome Activation and Endothelial Dysfunction
炎症小体激活和内皮功能障碍中的膜筏平台
- 批准号:
9273595 - 财政年份:2004
- 资助金额:
$ 28.63万 - 项目类别: