Quantification and Reduction of Spatial Scale-Induced Uncertainty

空间尺度引起的不确定性的量化和减少

基本信息

  • 批准号:
    1461390
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-05-01 至 2018-02-28
  • 项目状态:
    已结题

项目摘要

This research project will examine spatial scale-induced uncertainties and address issues involved in assembling multi-source, multi-scale data in a spatial analysis. Many spatial studies are compromised due to a discrepancy between the spatial scale at which data are analyzed and the spatial scale at which the phenomenon under investigation operates. One consequence has been that research findings often conflict when analyses are conducted at differing scales. Decision making and policy formulation therefore may be misguided by conflicting, biased research findings brought about by spatial scale. Lacking appropriate ways to deal with this spatial problem has made many existing findings less compelling or even invalid. In the era of big data with the advancement of spatial data collection technologies, data that were once difficult or impossible to obtain are now widely available at various spatial scales and are being used to study a variety of problems. Questions regarding spatial data thus become more pressing. The strategies to be developed for addressing the spatial scale issues have the potential to be applied to many fields and applications. The research results will benefit researchers and practitioners in processing, analyzing, and presenting multi-source, multi-scale spatial data. Numerous studies have been conducted to understand how issues related to scale influence analyses and interpretation. Despite the efforts, this remains a widely recognized, complex problem with few generalizable solutions. Even when studies are conducted at the appropriate spatial scale, uncertainty may exist because data are usually collected at different scales and therefore must be aggregated or interpolated to achieve the study scale. Using a large public health surveillance dataset, the investigators will develop a measurement error-based statistical framework to quantify the space scale-induced uncertainties and provide strategies to ameliorate the issues. The research will address issues of 1) characterization of scale due to spatial scale definition and data misalignment in the measurement error framework; 2) quantification of the effects of scale issues on the estimation significance and parameter biasedness; and 3) strategies that may be used to reduce uncertainties in a multi-scale analysis.
该研究项目将研究空间尺度引起的不确定性,并解决在空间分析中组装多源、多尺度数据所涉及的问题。 由于分析数据的空间尺度与所研究现象发生的空间尺度之间的差异,许多空间研究受到损害。 结果之一是,当以不同规模进行分析时,研究结果往往会发生冲突。 因此,决策和政策制定可能会被空间尺度带来的相互矛盾、有偏见的研究结果所误导。 由于缺乏处理这一空间问题的适当方法,许多现有的发现变得不那么引人注目,甚至无效。 在大数据时代,随着空间数据采集技术的进步,曾经难以或不可能获取的数据现在可以在各种空间尺度上广泛使用,并被用来研究各种问题。 因此,有关空间数据的问题变得更加紧迫。 为解决空间尺度问题而制定的策略有可能应用于许多领域和应用。 研究成果将有利于研究人员和从业者处理、分析和呈现多源、多尺度的空间数据。已经进行了大量研究来了解与量表相关的问题如何影响分析和解释。尽管做出了努力,但这仍然是一个广泛认可的复杂问题,几乎没有通用的解决方案。 即使研究是在适当的空间尺度上进行的,也可能存在不确定性,因为数据通常是在不同尺度上收集的,因此必须进行汇总或插值才能达到研究尺度。 使用大型公共卫生监测数据集,研究人员将开发一个基于测量误差的统计框架,以量化空间尺度引起的不确定性,并提供改善问题的策略。 该研究将解决以下问题:1)由于空间尺度定义和测量误差框架中的数据错位而导致的尺度表征; 2)量化尺度问题对估计显着性和参数偏差的影响; 3)可用于减少多尺度分析中的不确定性的策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daoqin Tong其他文献

Spatial layout optimization for solar photovoltaic (PV) panel installation
  • DOI:
    10.1016/j.renene.2019.12.099
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Qing Zhong;Daoqin Tong
  • 通讯作者:
    Daoqin Tong
Local and Landscape Factors Influence Plant-Pollinator Networks and Bee Foraging Behavior across an Urban Corridor
当地和景观因素影响城市走廊的植物传粉者网络和蜜蜂觅食行为
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Gabriella L. Pardee;Kimberly M. Ballare;J. Neff;Lauren Q. Do;DianaJoyce Ojeda;E. Bienenstock;B. Brosi;T. Grubesic;Jennifer A. Miller;Daoqin Tong;Shalene Jha
  • 通讯作者:
    Shalene Jha
Neighborhood characteristics and healthy food access: A spatial analysis of local and conventional food outlets in Maricopa County, Arizona
  • DOI:
    10.1007/s10708-025-11313-9
  • 发表时间:
    2025-03-06
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Mastura Safayet;Daoqin Tong
  • 通讯作者:
    Daoqin Tong
Identifying the spatial footprint of pollen distributions using the Geoforensic Interdiction (GOFIND) model
  • DOI:
    10.1016/j.compenvurbsys.2021.101615
  • 发表时间:
    2021-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daoqin Tong;Tony H. Grubesic;Wangshu Mu;Jennifer A. Miller;Edward Helderop;Shalene Jha;Berry J. Brosi;Elisa J. Bienenstock
  • 通讯作者:
    Elisa J. Bienenstock
Characterizing the spatial and temporal patterns of farmers' market visits
  • DOI:
    10.1016/j.apgeog.2015.06.005
  • 发表时间:
    2015-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    James Mack;Daoqin Tong
  • 通讯作者:
    Daoqin Tong

Daoqin Tong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daoqin Tong', 18)}}的其他基金

Quantification and Reduction of Spatial Scale-Induced Uncertainty
空间尺度引起的不确定性的量化和减少
  • 批准号:
    1821973
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: The Socioeconomic and Spatio-Temporal Dimensions of the Geography of Food Access
博士论文研究:食品获取地理的社会经济和时空维度
  • 批准号:
    1433681
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
  • 批准号:
    32373187
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Frameworks for Generic Robust Inference, Mismeasured Spatial and Network Data, and Nonlinear Dimension Reduction
通用鲁棒推理、误测空间和网络数据以及非线性降维的框架
  • 批准号:
    1950969
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Quantification and Reduction of Spatial Scale-Induced Uncertainty
空间尺度引起的不确定性的量化和减少
  • 批准号:
    1821973
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
High precision and high spatial resolution water level prediction method for flood damage reduction
减灾高精度高空间分辨率水位预测方法
  • 批准号:
    17K14728
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
A Reduction Technique for Temporal-Spatial Vth Variations and Leakage in a Coordinated Manner for SRAM-ReRAM Stacked Memories
一种以协调方式减少 SRAM-ReRAM 堆叠存储器时空 Vth 变化和泄漏的技术
  • 批准号:
    26420326
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Proposals for Design Method for Vibration Control Devices and Method of Seismic Retrofit for Spatial Structures which aim at Improvement of Response Reduction Effects
旨在提高减振效果的空间结构振动控制装置设计方法和抗震改造方法建议
  • 批准号:
    24760447
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of a meteorological information platform with high spatial resolution for the urban environment and disaster reduction
开发面向城市环境和减灾的高空间分辨率气象信息平台
  • 批准号:
    24226013
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
The research and study in Japan, America and Europe on planning and design and governance for population reduction cities through urban spatial compaction
日本、美国、欧洲通过城市空间压缩进行人口减少城市规划设计与治理研究
  • 批准号:
    23560753
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spatial depth based dimensionality reduction
基于空间深度的降维
  • 批准号:
    383013-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    University Undergraduate Student Research Awards
Dimensionality reduction based on the spatial depth
基于空间深度的降维
  • 批准号:
    368718-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 15万
  • 项目类别:
    University Undergraduate Student Research Awards
CMG: Improve the Computational Performance of Global Atmospheric Chemistry Models through Spatial Mechanism Reduction
CMG:通过空间机制还原提高全球大气化学模型的计算性能
  • 批准号:
    0417810
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了