Collaborative Research: Bayesian State-Space Models for Behavioral Time Series Data

合作研究:行为时间序列数据的贝叶斯状态空间模型

基本信息

  • 批准号:
    1461534
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

This research project will develop novel statistical models and inferential methods for the analysis of multi-domain behavioral data and time series with complex temporal and dependence structures. This research has the potential to advance the knowledge on the neural underpinnings of human and animal behavior. Neuroscience studies often involve the analysis and integration of data from different domains, such as behavioral and neural-derived data. The focus of this project will be on developing statistical methods for studying temporal data derived from functional magnetic resonance imagining (fMRI) and local field potentials, such as neural-derived brain signals. These methods also are applicable to other types of brain signals, such as electroencephalograms and magnetoencephalograms. These statistical approaches will integrate data from different domains and could be used by behavioral scientists to directly test for associations between decision making and brain response. The statistical tools that will be developed in this project are general and could be used to advance knowledge in other fields that collect temporal data with complex structure, such as sociology (network modeling), environmental sciences, linguistics, and signal processing.The project will develop Bayesian state-space models for activation and connectivity in fMRI data. These models will be used to simultaneously estimate the hemodynamic behavior in local areas of the brain and to estimate inter-dependence between brain regions in a network, while taking into account variations across subjects and differences across experimental conditions. The Bayesian state-space models and related inferential tools then will be extended to consider associations between the neural-derived brain signals and behavioral data under the context of behavioral experiments. Bayesian state-space models for brain connectivity using electrophysiological signals also will be developed. To deal with high computational demands for inference resulting from increased model complexity and massive data, the methods will be implemented using parallel computing.
这项研究项目将开发新的统计模型和推理方法,用于分析具有复杂时间和依赖结构的多领域行为数据和时间序列。这项研究有可能促进对人类和动物行为的神经基础的了解。神经科学研究通常涉及分析和整合来自不同领域的数据,如行为数据和神经衍生数据。该项目的重点将是开发统计方法,用于研究从功能磁共振成像(FMRI)和局部场电位(如神经衍生的大脑信号)获得的时间数据。这些方法也适用于其他类型的脑信号,如脑电和脑磁图。这些统计方法将整合来自不同领域的数据,并可被行为科学家用来直接测试决策和大脑反应之间的关联。该项目将开发的统计工具是通用的,可以用于推进其他领域的知识,这些领域收集具有复杂结构的时间数据,如社会学(网络建模)、环境科学、语言学和信号处理。该项目将开发用于激活和连接功能磁共振数据的贝叶斯状态空间模型。这些模型将被用来同时估计大脑局部区域的血流动力学行为,并估计网络中大脑区域之间的相互依赖,同时考虑到不同受试者的差异和不同实验条件的差异。然后,贝叶斯状态空间模型和相关的推理工具将被扩展到考虑神经衍生的大脑信号和行为实验背景下的行为数据之间的关联。还将开发使用电生理信号的大脑连接的贝叶斯状态空间模型。为了处理因模型复杂性增加和海量数据而导致的高计算要求,这些方法将使用并行计算来实现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhaoxia Yu其他文献

Correction: Liver autotransplantation and atrial reconstruction on a patient with multiorgan alveolar echinococcosis: a case report
  • DOI:
    10.1186/s12879-024-09690-6
  • 发表时间:
    2024-08-06
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Rexiati Ruze;Tiemin Jiang;Weimin Zhang;Mingming Zhang;Ruiqing Zhang;Qiang Guo;Aboduhaiwaier Aboduhelili;Musitapa Zhayier;Ahmad Mahmood;Zhaoxia Yu;Jianrong Ye;Yingmei Shao;Tuerganaili Aji
  • 通讯作者:
    Tuerganaili Aji
Statistical Challenges in Modeling Big Brain Signals
大脑信号建模的统计挑战
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhaoxia Yu;Dustin S. Pluta;Tong Shen;Chuansheng Chen;G. Xue;H. Ombao
  • 通讯作者:
    H. Ombao
Centralized health management based on hot spring resort improves physical examination indicators and sleep quality in people at high risk of chronic diseases: a randomized controlled trial
基于温泉度假村的集中健康管理改善慢性病高危人群体检指标和睡眠质量:随机对照试验
  • DOI:
    10.1007/s00484-023-02558-5
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Yu Chen;Fan Luo;Ling;Qi;Qing Zeng;Xiangjun Zhou;Ying Huang;Qiuyidi Gao;Wen Wang;Qiuling Shi;Qirui Wang;Zhaoxia Yu;Ting Wang;Jishan Jiang
  • 通讯作者:
    Jishan Jiang
Effects of different aperture-sized type I collagen/silk fibroin scaffolds on the proliferation and differentiation of human dental pulp cells
  • DOI:
    doi: 10.1093/rb/rbab028
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Shihui Jiang;Zhaoxia Yu;Lanrui Zhang;Guanhua Wang;Xiaohua Dai;Xiaoli Lian;Yan Yan;Linpu Zhang;Yue Wang;Ruixin Li;Huiru Zou
  • 通讯作者:
    Huiru Zou
Family-based association tests using genotype data with uncertainty.
  • DOI:
    10.1093/biostatistics/kxr045
  • 发表时间:
    2012-04
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Zhaoxia Yu
  • 通讯作者:
    Zhaoxia Yu

Zhaoxia Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
  • 批准号:
    2348163
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333326
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333324
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333325
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
  • 批准号:
    2210282
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
  • 批准号:
    2215169
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
  • 批准号:
    2215168
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing Bayesian Thinking in STEM
合作研究:推进 STEM 中的贝叶斯思维
  • 批准号:
    2215920
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了