GOALI: An Electrochemical Atomic Layer Deposition Process for Scalable Nanomanufacturing of On-chip Copper-based Interconnects
GOALI:用于可扩展纳米制造片上铜基互连的电化学原子层沉积工艺
基本信息
- 批准号:1461557
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advanced nanoelectronic circuits in microprocessors and memory devices utilize current-carrying copper interconnects. In modern devices, interconnect widths routinely approach a few tens of nanometers. However, the need for high interconnect packing density in high-performance computing drives a commensurate shrinking in the interconnect width in accordance with Moore's law. By the year 2020, interconnect widths are expected to shrink well below ten nanometers. A critical hurdle in driving such aggressive interconnect size reduction is the unavailability of an interconnect fabrication process with the following attributes: (i) Unprecedented atomic-level control needed to manipulate materials at the nanometer scale or below; and (ii) Ease of scale-up and integration with large-area substrates yielding reliable, low-cost manufacturability. This Grant Opportunity for Academic Liaison with Industry (GOALI) Program award will explore a novel approach towards nano-scale interconnect fabrication with the aforementioned attributes. This is critical for safeguarding Moore's law and for ensuring that the US semiconductor industry continues to maintain technological leadership in advanced nanoelectronics. This research will have broad impacts not just in the field of nanoelectronics, but also in many other areas central to the US economy and society, such as advanced energy systems and environmental remediation. In addition to enabling breakthroughs in scalable nanomanufacturing, this research will provide experiential engineering education and professional development to the next generation of scientists and engineers highly sought after by the US industry.The goal of the project is to study a novel electrochemical atomic layer deposition (e-ALD) process for the scalable nanomanufacturing of copper and copper-alloy interconnects. In spite of its enormous potential, state-of-the-art electrochemical atomic layer deposition of copper has not reached commercial viability primarily due to its low throughput, use of toxic metals, such as lead, and its inability to fabricate specific copper-alloys of relevance to nanoelectronic applications. To overcome these barriers, a 'one-step' lead-free electrochemical atomic layer deposition process will be investigated. Through fundamental characterization of the interplay between the electrode potential and the electrolyte chemistry, and through use of novel, environmentally benign electrolyte components, one-step deposition of copper and copper-alloy nano-films will be achieved. The project will eliminate a key technological roadblock in industrial-scale implementation of electrochemical atomic layer deposition technology for the metallization of nano-scale copper interconnects. An inter-disciplinary team of academic and industrial scientists will collaborate on the research through the exchange of knowledge in cutting-edge electrochemistry and advanced nanoelectronics.
微处理器和存储器设备中的高级纳米电子电路利用载流铜互连。在现代器件中,互连宽度通常接近几十纳米。然而,在高性能计算中对高互连封装密度的需要根据摩尔定律驱动互连宽度的相应收缩。到2020年,互连宽度预计将缩小到10纳米以下。驱动这种积极的互连尺寸减小的关键障碍是具有以下属性的互连制造工艺的不可用性:(i)在纳米尺度或更低尺度下操纵材料所需的前所未有的原子级控制;以及(ii)易于放大和与大面积衬底集成,从而产生可靠的、低成本的可制造性。这个学术与工业联络(GOALI)计划奖的资助机会将探索具有上述属性的纳米级互连制造的新方法。这对于维护摩尔定律和确保美国半导体行业继续保持先进纳米电子技术的领先地位至关重要。这项研究将产生广泛的影响,不仅在纳米电子领域,而且在许多其他领域的核心美国经济和社会,如先进的能源系统和环境修复。除了在可扩展的纳米制造方面取得突破外,这项研究还将为美国工业界高度追捧的下一代科学家和工程师提供经验式的工程教育和专业发展。该项目的目标是研究一种新型的电化学原子层沉积(e-ALD)工艺,用于铜和铜合金互连的可扩展纳米制造。尽管铜的电化学原子层沉积具有巨大的潜力,但其尚未达到商业可行性,这主要是由于其低产量、使用有毒金属(例如铅)以及其不能制造与纳米电子应用相关的特定铜合金。为了克服这些障碍,一个“一步”无铅电化学原子层沉积过程将被调查。通过对电极电势和电解质化学之间的相互作用的基本表征,以及通过使用新颖的、环境友好的电解质组分,将实现铜和铜合金纳米膜的一步沉积。该项目将消除工业规模实施电化学原子层沉积技术的关键技术障碍,用于纳米级铜互连的金属化。一个由学术和工业科学家组成的跨学科团队将通过交流尖端电化学和先进纳米电子学的知识来合作研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rohan Akolkar其他文献
次世代型1,3ポリオール合成法の確立に向けた触媒的不斉多重アルドール反応の開発
催化不对称多重醛醇缩合反应的发展,建立下一代1,3多元醇合成方法
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
林太郎;Rohan Akolkar;横井昌幸;岡本尚樹;齊藤丈靖;近藤和夫;三ツ沼 治信, 林 禄清, 山本 久美子, 井田 貴志, 松永 茂樹, 金井 求 - 通讯作者:
三ツ沼 治信, 林 禄清, 山本 久美子, 井田 貴志, 松永 茂樹, 金井 求
Modeling of the Current Distribution in Aluminum Anodization
- DOI:
10.1023/b:jach.0000035611.87036.36 - 发表时间:
2004-08-01 - 期刊:
- 影响因子:3.000
- 作者:
Rohan Akolkar;Uziel Landau;Harry Kuo;Yar-Ming Wang - 通讯作者:
Yar-Ming Wang
めっき中に生成されるビア/スルーホール内部のCu+濃度分布シミュレーション
模拟电镀过程中产生的通孔/通孔内的 Cu+ 浓度分布
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
林太郎;Rohan Akolkar;横井昌幸;岡本尚樹;齊藤丈靖;近藤和夫;三ツ沼 治信, 林 禄清, 山本 久美子, 井田 貴志, 松永 茂樹, 金井 求;林 太郎 - 通讯作者:
林 太郎
Possibility to enhance teraherz emission from intrinsic Josephson junction by external local heating
通过外部局部加热增强本征约瑟夫森结的太赫兹发射的可能性
- DOI:
10.1088/1742-6596/507/4/042002 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
林太郎;Rohan Akolkar;横井昌幸;岡本尚樹;齊藤丈靖;近藤和夫;三ツ沼 治信, 林 禄清, 山本 久美子, 井田 貴志, 松永 茂樹, 金井 求;林 太郎;林 太郎;林 太郎;林 太郎;林 太郎;林 太郎;林太郎;林太郎;林太郎;林太郎;Hidehiro Asai and Shiro Kawabata - 通讯作者:
Hidehiro Asai and Shiro Kawabata
Electrochemical characterization of micro-cracks in polyurethane resin films deposited on metallic surfaces
- DOI:
10.1007/s10800-016-1005-6 - 发表时间:
2016-10-01 - 期刊:
- 影响因子:3.000
- 作者:
Karun K. Rao;Molly Ferguson;Kyle Murphy;Jean Zhao;Daniel Lacks;Rohan Akolkar - 通讯作者:
Rohan Akolkar
Rohan Akolkar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rohan Akolkar', 18)}}的其他基金
GOALI: Electrochemistry-based Atomic Layer Etching of Metals for Integrated Circuits
GOALI:基于电化学的集成电路金属原子层蚀刻
- 批准号:
1661565 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Atomic Imaging and Diagnosis of Electrochemical Materials - AIDEChem
电化学材料的原子成像和诊断 - AIDEChem
- 批准号:
EP/Z000483/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
CAREER: Atomic-Scale Origins of Fast Ion Conduction through Complex Solid-State Electrochemical Interfaces
职业:通过复杂固态电化学界面快速离子传导的原子尺度起源
- 批准号:
2239598 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Atomic force microscope for high-speed, nanomechanical and electrochemical characterizations
用于高速、纳米力学和电化学表征的原子力显微镜
- 批准号:
529852963 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Major Research Instrumentation
Single Atom Catalysts and Atomic Scale Design of Interface for Electrochemical Energy Conversion and Storage
用于电化学能量转换和存储的单原子催化剂和原子尺度界面设计
- 批准号:
RGPIN-2019-06617 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Developing an atomic-scale computational framework to gain insights about the electrochemical double-layer for applications to renewable energy
开发原子级计算框架,以深入了解电化学双层在可再生能源中的应用
- 批准号:
RGPIN-2020-07095 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Developing an atomic-scale computational framework to gain insights about the electrochemical double-layer for applications to renewable energy
开发原子级计算框架,以深入了解电化学双层在可再生能源中的应用
- 批准号:
RGPIN-2020-07095 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Operando electrochemical atomic force microscopy of Li-S batteries: Revealing the nanoscale mechanisms driving anode and cathode capacity loss and
锂硫电池的操作电化学原子力显微镜:揭示驱动阳极和阴极容量损失和
- 批准号:
2593702 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Studentship
Single Atom Catalysts and Atomic Scale Design of Interface for Electrochemical Energy Conversion and Storage
用于电化学能量转换和存储的单原子催化剂和原子尺度界面设计
- 批准号:
RGPIN-2019-06617 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Single Atom Catalysts and Atomic Scale Design of Interface for Electrochemical Energy Conversion and Storage
用于电化学能量转换和存储的单原子催化剂和原子尺度界面设计
- 批准号:
RGPIN-2019-06617 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Developing an atomic-scale computational framework to gain insights about the electrochemical double-layer for applications to renewable energy
开发原子级计算框架,以深入了解电化学双层在可再生能源中的应用
- 批准号:
RGPIN-2020-07095 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual