CAREER: Atomic-Scale Origins of Fast Ion Conduction through Complex Solid-State Electrochemical Interfaces

职业:通过复杂固态电化学界面快速离子传导的原子尺度起源

基本信息

  • 批准号:
    2239598
  • 负责人:
  • 金额:
    $ 66.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-01 至 2028-02-29
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL DESCRIPTION: Ceramic materials are essential for clean energy technologies. Specifically, the next-generation solid-state batteries using ceramics as a medium to conduct ions between positive and negative electrodes can improve the safety and energy density over today’s conventional liquid-based lithium-ion battery technology. However, the ability of ion transport in ceramics is not high enough to make batteries charge faster for use in electric vehicles and high-power applications. To solve this critical issue, this project aims to study how the material’s structures and interfaces affect the ion conduction under complex electrochemical conditions. Advanced electron microscopy techniques are used to visualize these fundamental processes on the nanometer scale. This is important because the obtained scientific knowledge can be used as design rules to guide the development of viable energy storage technologies, enhancing the energy security and sustainability. This project provides training on microscopy and analytical tools for diverse students at all levels and promotes broader participation of women and underrepresented minorities in the workforce development. The education and outreach program designed “for understanding nanotechnology and materials experience (FunMe)” offers summer research interns and extracurricular activities for undergraduate and K-12 students by leveraging the minority-serving programs partnered with local and nationwide initiatives.TECHNICAL DETAILS: Solid-state electrolytes with high ionic conductivity and interfacial stability are vital and urgently needed to enable safe and high-performance all-solid-state batteries for the next generation energy storage technology. This CAREER project aims to fundamentally understand the atomic-scale origin of fast lithium-ion conduction through complex electrochemical interfaces of ceramic solid-state electrolytes. Specifically, the effects of grain boundary microstructure, compositional heterogeneity, and space charge induced electrostatic potential on the ionic conductivity as well as the correlated electro-chemo-mechanical interface degradation mechanism will be elucidated using in situ transmission electron microscopy integrated with operando electrochemical impedance spectroscopy under air-free environments. The gained new knowledge will provide design principles for microstructural optimization and interfacial engineering to improve the cell performance and stability. This research will have multifaceted impacts on the advancements of fundamental theories, microscopy methodologies, and technically viable all-solid-state batteries for energy-intensive applications. The integrated education and outreach program offers a unique microscopy-centric STEM pipeline to engage graduate, undergraduate, and K-12 students, enhance broader participation of women and underrepresented minorities, and support their career development and work readiness through interrelated teaching, mentoring, training, and outreach activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:陶瓷材料是清洁能源技术的关键。具体而言,使用陶瓷作为介质在正负极之间传导离子的下一代固态电池,可以比当今传统的液基锂离子电池技术提高安全性和能量密度。然而,陶瓷中的离子传输能力还不足以使电池充电更快,以用于电动汽车和高功率应用。为了解决这一关键问题,本项目旨在研究材料的结构和界面如何影响复杂电化学条件下的离子传导。先进的电子显微镜技术被用来在纳米尺度上可视化这些基本过程。这一点很重要,因为获得的科学知识可以作为设计规则,指导可行的储能技术的开发,提高能源安全性和可持续性。该项目为各级各类学生提供显微镜和分析工具方面的培训,并促进妇女和代表性不足的少数群体更广泛地参与劳动力发展。该教育和推广计划旨在“了解纳米技术和材料经验(FunMe)”,通过利用与当地和全国性计划合作的少数民族服务计划,为本科生和K-12学生提供暑期研究实习生和课外活动。具有高离子电导率和界面稳定性的固态电解质是至关重要的,迫切需要实现安全和高性能的全电解质。下一代储能技术的固态电池。该CAREER项目旨在从根本上了解通过陶瓷固态电解质的复杂电化学界面快速锂离子传导的原子级起源。具体而言,晶界微观结构,成分的异质性,和空间电荷引起的静电势的离子电导率以及相关的电化学机械界面降解机制的影响将阐明使用原位透射电子显微镜集成与操作电化学阻抗谱在无空气的环境下。所获得的新知识将为微结构优化和界面工程提供设计原则,以提高电池性能和稳定性。这项研究将对基础理论,显微镜方法学和技术上可行的能源密集型应用全固态电池的进步产生多方面的影响。综合教育和推广计划提供了一个独特的以显微镜为中心的STEM管道,以吸引研究生,本科生和K-12学生,提高妇女和代表性不足的少数民族的更广泛参与,并通过相互关联的教学,指导,培训,该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的评估,被认为是值得支持的。影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reliable Microscopy and Microanalysis Strategies for Real-World Batteries
适用于实际电池的可靠显微镜和微量分析策略
  • DOI:
    10.1093/micmic/ozad067.049
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    He, Kai
  • 通讯作者:
    He, Kai
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kai He其他文献

Simulation of microchannel plate photomultiplier tube in high magnetic fields
高磁场下微通道板光电倍增管的模拟
Efficient Identity-Based Broadcast Encryption Scheme on Lattices for the Internet of Things
物联网格上基于身份的高效广播加密方案
Hybrid Connectionist Symbolic Model for Morphologic Recognition by Tactile Sensing
触觉感知形态识别的混合联结符号模型
  • DOI:
    10.1109/jsen.2020.3041058
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Kai He;Ning Xi;Peng Yu;Wenxue Wang;Liang Zhao;Tie Yang;Imad H. Elhaj;Lianqing Liu
  • 通讯作者:
    Lianqing Liu
Ultrafast all-optical solid-state framing camera with picosecond temporal resolution
具有皮秒时间分辨率的超快全光学固态分幅相机
  • DOI:
    10.1364/oe.25.008721
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Guilong Gao;Kai He;Jinshou Tian;Chunmin Zhang;Jun Zhang;Tao Wang;Shaorong Chen;Hui Jia;Fenfang Yuan;Lingliang Liang;Xin Yan;Shaohui Li;Chao Wang;Fei Yin
  • 通讯作者:
    Fei Yin
In-mold oxidaiton behavior of Mg-4.32Y-2.83Nd-0.41Zr alloy
Mg-4.32Y-2.83Nd-0.41Zr合金的模内氧化行为
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Xinyi Zhao;Zhiliang Ning;Zhongquan Li;Wenbing Zou;Baohui Li;Kai He;Fuyang Cao;Jianfei Sun;Alan A. Luo
  • 通讯作者:
    Alan A. Luo

Kai He的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kai He', 18)}}的其他基金

RII Track-4: Exploring Ferromagnetism in Two-Dimensional Van Der Waals Materials
RII Track-4:探索二维范德华材料中的铁磁性
  • 批准号:
    1929138
  • 财政年份:
    2019
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Atomic scale understanding of the doping incorporation and transport properties in ultrawide band gap semiconductors
职业:从原子尺度理解超宽带隙半导体的掺杂掺入和输运特性
  • 批准号:
    2145091
  • 财政年份:
    2022
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Continuing Grant
CAREER: Design and Understanding up from the Atomic Scale of Multivalent Intercalation Electrodes for High-Energy-Density Rechargeable Batteries
职业:从原子尺度设计和理解高能量密度可充电电池的多价插层电极
  • 批准号:
    1847552
  • 财政年份:
    2019
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Standard Grant
CAREER: Atomic Scale Design of van der Waals Heterostructure Nanoribbons
职业:范德华异质结构纳米带的原子尺度设计
  • 批准号:
    1453924
  • 财政年份:
    2015
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Continuing Grant
CAREER: Atomic-Scale Visualization of Excitonic States in Individual Carbon Nanotubes
职业:单个碳纳米管中激子态的原子尺度可视化
  • 批准号:
    1454036
  • 财政年份:
    2015
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Continuing Grant
CAREER: Atomic Scale Defect Engineering in Graphene Membranes
职业:石墨烯膜的原子尺度缺陷工程
  • 批准号:
    1464616
  • 财政年份:
    2014
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Standard Grant
CAREER: The Role of Grain Boundary Character in Corrosion Behavior: Linking Atomic Scale Interfacial Structure to Precipitation and Failure Mechanisms
职业:晶界特征在腐蚀行为中的作用:将原子尺度界面结构与沉淀和失效机制联系起来
  • 批准号:
    1150807
  • 财政年份:
    2012
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Standard Grant
CAREER: Atomic Scale Defect Engineering in Graphene Membranes
职业:石墨烯膜的原子尺度缺陷工程
  • 批准号:
    1054406
  • 财政年份:
    2011
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Standard Grant
CAREER: Visualizing the Formation of the Charge Density Wave Phase at the Atomic Scale
职业:在原子尺度上可视化电荷密度波相的形成
  • 批准号:
    1056527
  • 财政年份:
    2011
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Continuing Grant
CAREER: Atomic Scale Study of Reduction of Metal Oxides
职业:金属氧​​化物还原的原子尺度研究
  • 批准号:
    1056611
  • 财政年份:
    2011
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Standard Grant
CAREER: Towards an Atomic Scale Understanding of Spin Polarized Electron Transport
职业生涯:从原子尺度理解自旋极化电子传输
  • 批准号:
    0349108
  • 财政年份:
    2004
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了