Collaborative Research: Novel Fractional Order Ground Motion Intensity Measures for High Confidence Risk Assessment of Distributed Infrastructures
合作研究:用于分布式基础设施高置信度风险评估的新型分数阶地震动强度测量
基本信息
- 批准号:1462183
- 负责人:
- 金额:$ 22.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Seismic risk assessment frameworks support risk-informed decision making in planning strategies for disaster prevention and mitigation. Such frameworks rely on intensity measures (IMs) to represent the strength of earthquake events, and to predict the behavior of key infrastructure components and their cascading effects on network performance and socio-economic systems. However, the current practice of adopting hazard intensity measures based on integer order derivatives or integrals of the ground motion time history is not ideal to predict infrastructure performance, and may induce significant uncertainties in the final outcome of regional risk analyses. In order to release the limitation of discrete integer order differential operations for IM characterization, this research will use new classes of spatially correlated earthquake intensity measures for regional risk assessment of infrastructures termed "á-order IMs" based on concepts from fractional order calculus. The methodology and tools provide more accurate probabilistic predictions of the seismic response of structures and infrastructure components by significantly reducing uncertainties, thus increasing the confidence in seismic reliability and risk assessment of complex systems. This achievement will offer broad impacts to owners charged with managing risks to large distributed infrastructure systems, and the public at large who benefit from associated risk-informed decisions on mitigation and response strategies.The project will use derivation of novel fractional order ground motion responses to characterize earthquake intensity, including identification of computationally efficient algorithms to conduct the fractional order operations. The optimal demand model form and á-order for the IMs will be identified to enable probabilistic response prediction of a wide range of complex infrastructure constituents anticipated across a regional portfolio. The project will also develop correlated ground motion prediction equations (GMPEs) for the fractional order IMs and quantify the resulting reduced uncertainty in risk estimates (e.g. network performance, economic losses) for distributed infrastructure systems. The advancements offered by this research will afford more robust analytical methods for probabilistic characterization of earthquakes across a region, efficient modeling of the physical demand imparted on infrastructures, and increased confidence in resulting risk estimates. The overall uncertainty reduction can advance risk-informed decision making targeted at reducing human casualties, economic losses, and loss of function of infrastructure in seismic zones.
地震风险评估框架支持在规划防灾减灾战略时作出风险知情的决策。这些框架依赖烈度度量(IMS)来表示地震事件的强度,并预测关键基础设施组件的行为及其对网络性能和社会经济系统的连锁影响。然而,目前采用基于地面运动时程的整数阶导数或积分的灾害强度测量的做法对于预测基础设施的性能并不理想,并且可能在区域风险分析的最终结果中引入重大不确定性。为了克服离散整数阶差分运算用于IM表征的局限性,本研究将基于分数阶微积分的概念,将空间相关的新型地震烈度度量用于基础设施的区域风险评估,称为“α阶IMS”。该方法和工具通过显著减少不确定性,为结构和基础设施部件的地震响应提供了更准确的概率预测,从而增加了对复杂系统的地震可靠性和风险评估的信心。这一成果将对负责管理大型分布式基础设施系统风险的业主和广大公众产生广泛的影响,他们受益于相关的缓解和响应战略风险知情决策。该项目将使用新的分数阶地面运动响应的推导来表征地震烈度,包括识别执行分数阶运算的计算高效算法。将确定IMS的最佳需求模型形式和顺序,以实现对区域投资组合中预期的各种复杂基础设施组成部分的概率响应预测。该项目还将开发分数阶IMS的相关地面运动预测方程(GMPE),并量化由此降低的分布式基础设施系统风险估计的不确定性(例如网络性能、经济损失)。这项研究的进展将为区域地震的概率特征提供更可靠的分析方法,对基础设施的实际需求进行有效的建模,并增加对由此产生的风险估计的信心。总体上减少不确定性可以推进风险知情决策,旨在减少人员伤亡、经济损失和地震区基础设施功能丧失。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On confidence intervals for failure probability estimates in Kriging-based reliability analysis
- DOI:10.1016/j.ress.2019.106758
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:Zeyu Wang;A. Shafieezadeh
- 通讯作者:Zeyu Wang;A. Shafieezadeh
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abdollah Shafieezadeh其他文献
Shake table testing and computational investigation of the seismic performance of modularized suspended building systems
- DOI:
10.1007/s10518-020-00902-3 - 发表时间:
2020 - 期刊:
- 影响因子:4.6
- 作者:
Zhihang Ye;Gang Wu;De-Cheng Feng;Abdollah Shafieezadeh - 通讯作者:
Abdollah Shafieezadeh
System outage fragility for power systems: A robust data-driven framework for disparity analysis using multiple hurricane events
电力系统的系统停运脆弱性:一种使用多个飓风事件进行差异分析的稳健数据驱动框架
- DOI:
10.1016/j.ijdrr.2025.105240 - 发表时间:
2025-02-15 - 期刊:
- 影响因子:4.500
- 作者:
Alexys H Rodríguez A;Abdollah Shafieezadeh;Alper Yilmaz - 通讯作者:
Alper Yilmaz
Optimal EDPs for Post-Earthquake Damage Assessment of Extended Pile-Shaft–Supported Bridges Subjected to Transverse Spreading
用于横向扩展的加长桩轴支撑桥梁震后损伤评估的最佳 EDP
- DOI:
10.1193/090417eqs171m - 发表时间:
2019-08 - 期刊:
- 影响因子:5
- 作者:
Abdollah Shafieezadeh;Xiaowei Wang;Aijun Ye - 通讯作者:
Aijun Ye
Wind-induced transmission line interruption fragility models: An adaptive GAN-augmented probabilistic classification approach for extremely unbalanced data
风致输电线路中断脆弱性模型:一种针对极度不平衡数据的自适应生成对抗网络增强概率分类方法
- DOI:
10.1016/j.egyai.2025.100511 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:9.600
- 作者:
Mazin Al-Mahrouqi;Abdollah Shafieezadeh;Jieun Hur;Jae-Wook Jung;Jeong-Gon Ha;Daegi Hahm - 通讯作者:
Daegi Hahm
Robust wind turbine monitoring for digital twin integration: A physics-informed covariance-preserving deep learning approach
用于数字孪生集成的稳健的风力涡轮机监测:一种基于物理信息且保持协方差的深度学习方法
- DOI:
10.1016/j.renene.2025.123176 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:9.100
- 作者:
Minhyeok Ko;Abdollah Shafieezadeh - 通讯作者:
Abdollah Shafieezadeh
Abdollah Shafieezadeh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abdollah Shafieezadeh', 18)}}的其他基金
Collaborative Research: A Deeply Integrated Physics-Based and Data-Driven Approach for Effective Resilience Management of the Power Grid
协作研究:基于物理和数据驱动的深度集成方法,用于有效的电网弹性管理
- 批准号:
2000156 - 财政年份:2020
- 资助金额:
$ 22.72万 - 项目类别:
Standard Grant
Collaborative Research: Downburst Fragility Characterization of Transmission Line Systems Using Experimental and Validated Stochastic Numerical Simulations
合作研究:使用实验和验证的随机数值模拟来表征传输线系统的下击暴脆性
- 批准号:
1762918 - 财政年份:2018
- 资助金额:
$ 22.72万 - 项目类别:
Standard Grant
Experimentally Validated Stochastic Numerical Framework to Generate Multi-Dimensional Fragilities for Hurricane Resilience Enhancement of Transmission Systems
经过实验验证的随机数值框架可生成多维脆弱性以增强传输系统的飓风弹性
- 批准号:
1635569 - 财政年份:2016
- 资助金额:
$ 22.72万 - 项目类别:
Standard Grant
A Novel Dynamically Coupled Storm Surge Hazard-Infrastructure Model for Effective Real-Time Risk-Informed Decision Making
用于有效实时风险知情决策的新型动态耦合风暴潮灾害基础设施模型
- 批准号:
1563372 - 财政年份:2016
- 资助金额:
$ 22.72万 - 项目类别:
Standard Grant
Collaborative Research: Risk Informed Decision Making for Maintenance of Deteriorating Distribution Poles Under Extreme Wind Hazards
合作研究:在极端风灾下维护恶化的配电杆的风险知情决策
- 批准号:
1333943 - 财政年份:2013
- 资助金额:
$ 22.72万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347992 - 财政年份:2024
- 资助金额:
$ 22.72万 - 项目类别:
Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347991 - 财政年份:2024
- 资助金额:
$ 22.72万 - 项目类别:
Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
- 批准号:
2346198 - 财政年份:2024
- 资助金额:
$ 22.72万 - 项目类别:
Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
- 批准号:
2346197 - 财政年份:2024
- 资助金额:
$ 22.72万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 22.72万 - 项目类别:
Standard Grant
Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
- 批准号:
2310137 - 财政年份:2023
- 资助金额:
$ 22.72万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
- 批准号:
2324033 - 财政年份:2023
- 资助金额:
$ 22.72万 - 项目类别:
Standard Grant
Collaborative Research: IHBEM: The fear of here: Integrating place-based travel behavior and detection into novel infectious disease models
合作研究:IHBEM:这里的恐惧:将基于地点的旅行行为和检测整合到新型传染病模型中
- 批准号:
2327797 - 财政年份:2023
- 资助金额:
$ 22.72万 - 项目类别:
Continuing Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
- 批准号:
2219796 - 财政年份:2023
- 资助金额:
$ 22.72万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 22.72万 - 项目类别:
Standard Grant