Collaborative Research: Battery Electrode Fabrication through Innovative Powder based Additive Manufacturing

合作研究:通过创新粉末增材制造制造电池电极

基本信息

  • 批准号:
    1462343
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-04-01 至 2018-03-31
  • 项目状态:
    已结题

项目摘要

Lithium-ion batteries are one of the most widely used batteries due to their high energy density, long cycle life, and low self-discharge. With the rapid development of portable electronics, electrical vehicles, and grid systems, lithium-ion batteries will be more widely employed. However, current slurry based battery electrode manufacturing is costly, preventing wide applications of lithium-ion batteries. The organic solvent typically used in the slurry can be expensive. In addition, a time-consuming and energy-intensive drying procedure has to be employed. The evaporated solvent also needs to be recovered in order to prevent potential environmental pollution. Therefore, it is desirable to have solvent-free battery manufacturing processes. This award supports fundamental research to form the knowledge base for development of solvent-free battery manufacturing processes. Results from this research will enhance the U.S. competence in energy manufacturing industry and benefit the society by providing energy storage solutions. A major technical challenge in developing solvent-free battery manufacturing processes is to homogeneously disperse battery materials including active materials, conductive additives, and binder materials. This research aims to provide the new knowledge needed to overcome this challenge: (1) interfacial properties of the battery materials, (2) binder distribution characteristics during battery powder mixing, and (3) molten binder wettability and spreading kinetics on other materials during binder melting. The research team will perform multi-scale simulations (molecular dynamics at nanometer scale, finite difference modeling at micrometer scale, and discrete element modeling at micrometer to millimeter scales) to predict interfacial properties, binder spatial distribution after mixing, and molten binder spreading characteristics and surface coverages. Simulation results will be verified by surface energy measurements of dry powders and scanning electron microscopic observations of binder distributions after the powder mixing and binder melting steps respectively.
锂离子电池由于其高能量密度、长循环寿命和低自放电而成为最广泛使用的电池之一。随着便携式电子产品、电动汽车和电网系统的快速发展,锂离子电池将得到更广泛的应用。然而,目前基于浆料的电池电极制造成本高,阻碍了锂离子电池的广泛应用。通常用于浆料中的有机溶剂可能是昂贵的。此外,还必须采用耗时且耗能的干燥程序。蒸发的溶剂也需要回收,以防止潜在的环境污染。因此,期望具有无溶剂电池制造方法。该奖项支持基础研究,以形成无溶剂电池制造工艺开发的知识基础。这项研究的结果将提高美国在能源制造业的竞争力,并通过提供储能解决方案造福社会。开发无溶剂电池制造工艺的主要技术挑战是均匀分散电池材料,包括活性材料、导电添加剂和粘合剂材料。本研究旨在提供克服这一挑战所需的新知识:(1)电池材料的界面特性,(2)电池粉末混合过程中的粘合剂分布特性,以及(3)粘合剂熔融过程中熔融粘合剂的润湿性和在其他材料上的铺展动力学。研究团队将进行多尺度模拟(纳米尺度的分子动力学,微米尺度的有限差分建模,以及微米至毫米尺度的离散元建模),以预测界面特性,混合后的粘合剂空间分布,以及熔融粘合剂的扩散特性和表面覆盖率。模拟结果将分别通过粉末混合和粘结剂熔化步骤后干燥粉末的表面能测量和粘结剂分布的扫描电子显微镜观察来验证。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heng Pan其他文献

Assessment of the electronic structure, morphology, and photoluminescence properties of Ca9-xAl6O18:xEu3+ phosphor using the hydrothermal assisted solid state method
  • DOI:
    https://doi.org/10.1016/j.powtec.2020.01.035
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
  • 作者:
    Yong Yang;Heng Pan;Xiaocui Zhang;Tongyu He;Zhuo Hou;Zhiping Yang;Dawei Wang;Li Guan;Xu Li
  • 通讯作者:
    Xu Li
ACCL: Architecting Highly Scalable Distributed Training Systems With Highly Efficient Collective Communication Library
ACCL:利用高效的集体通信库构建高度可扩展的分布式培训系统
  • DOI:
    10.1109/mm.2021.3091475
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Jianbo Dong;Shaochuan Wang;Fei Feng;Zheng Cao;Heng Pan;Lingbo Tang;Pengcheng Li;Hao Li;Qianyuan Ran;Yiqun Guo;Shanyuan Gao;Xin Long;J. Zhang;Yong Li;Zhisheng Xia;Liuyihan Song;Yingya Zhang;Pan Pan;Guohui Wang;Xiaowei Jiang
  • 通讯作者:
    Xiaowei Jiang
Advances in regenerated cellulosic aerogel from waste cotton textile for emerging multidimensional applications
用于新兴多维应用的废旧棉纺织品再生纤维素气凝胶的进展
  • DOI:
    10.1016/j.ijbiomac.2024.132462
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
    8.500
  • 作者:
    Zhiyu Huang;Yu Zhang;Tonghe Xing;Annan He;Yuxin Luo;Mengqi Wang;Sijie Qiao;Aixin Tong;Zhicheng Shi;Xiaohong Liao;Heng Pan;Zihui Liang;Fengxiang Chen;Weilin Xu
  • 通讯作者:
    Weilin Xu
MFF-Net: A multi-scale feature fusion network for birdsong classification
MFF - 网络:一种用于鸟鸣分类的多尺度特征融合网络
  • DOI:
    10.1016/j.apacoust.2025.110561
  • 发表时间:
    2025-03-15
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Hongfang Zhou;Kangyun Zheng;Wenjing Zhu;Jiahao Tong;Chenhui Cao;Heng Pan;Junhuai Li
  • 通讯作者:
    Junhuai Li
Two-step electro-thermochemical cycle for CO<sub>2</sub> splitting in a solid oxide electrochemical cell
  • DOI:
    10.1016/j.apenergy.2024.124998
  • 发表时间:
    2025-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Heng Pan;Yuhao Zhao;Feiyu He;Liya Zhu;Zhaolu Wang;Yihang Li;Youjun Lu
  • 通讯作者:
    Youjun Lu

Heng Pan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heng Pan', 18)}}的其他基金

PFI-TT: Development and Commercialization of a Microscale Three-Dimentional (3D) Printer for Multi-materials
PFI-TT:用于多材料的微型三维 (3D) 打印机的开发和商业化
  • 批准号:
    2213693
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Fundamental Investigations in Femtosecond Laser-based Additive Manufacturing with Functional Nanomaterials
功能纳米材料飞秒激光增材制造的基础研究
  • 批准号:
    2054104
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Laser Direct Writing of Three-Dimensional Functional Nanostructures
职业:三维功能纳米结构的激光直写
  • 批准号:
    2054098
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Laser Direct Writing of Three-Dimensional Functional Nanostructures
职业:三维功能纳米结构的激光直写
  • 批准号:
    1846673
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Fundamental Investigations in Femtosecond Laser-based Additive Manufacturing with Functional Nanomaterials
功能纳米材料飞秒激光增材制造的基础研究
  • 批准号:
    1635256
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Directed Templating of Semiconductor Nanocrystals Through Laser Melting
合作研究:通过激光熔化实现半导体纳米晶体的定向模板化
  • 批准号:
    1363313
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342024
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterization of Transport Properties and Microstructures of Battery Electrolytes via In Situ Spectroscopy
合作研究:通过原位光谱表征电池电解质的传输特性和微观结构
  • 批准号:
    2243098
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineering the Chemistry at Solid-Solid Interfaces of Li-O2 Battery Cathodes
合作研究:锂氧电池正极固-固界面化学工程
  • 批准号:
    2312634
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterization of Transport Properties and Microstructures of Battery Electrolytes via In Situ Spectroscopy
合作研究:通过原位光谱表征电池电解质的传输特性和微观结构
  • 批准号:
    2120559
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Medium: Systems Foundations for Battery-free Body Area Intelligence and Sensing
合作研究:CNS Medium:无电池身体区域智能和传感的系统基础
  • 批准号:
    2107400
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterization of Transport Properties and Microstructures of Battery Electrolytes via In Situ Spectroscopy
合作研究:通过原位光谱表征电池电解质的传输特性和微观结构
  • 批准号:
    2120555
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Medium: Systems Foundations for Battery-free Body Area Intelligence and Sensing
合作研究:CNS Medium:无电池身体区域智能和传感的系统基础
  • 批准号:
    2107133
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineering the Chemistry at Solid-Solid Interfaces of Li-O2 Battery Cathodes
合作研究:锂氧气电池正极固-固界面化学工程
  • 批准号:
    1935581
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineering the Chemistry at Solid-Solid Interfaces of Li-O2 Battery Cathodes
合作研究:锂氧气电池正极固-固界面化学工程
  • 批准号:
    1935645
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了