EAGER-DynamicData: Dynamic Data-Driven Avionics Systems for Flight Decision Support in Emergency Conditions
EAGER-DynamicData:动态数据驱动的航空电子系统,用于紧急情况下的飞行决策支持
基本信息
- 批准号:1462342
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dynamic Data Driven Avionics Systems (DDDAS) have the potential to endow aircraft with the ability to dynamically use sensor data to detect failure conditions and accurately simulate flight plans in order to support pilot decisions in emergency scenarios. PI Varela will investigate how to dynamically detect data errors and equipment failures by matching measured data to pre-computed error signatures and damage performance profiles. Once a failure type is detected, redundant data will be used to correct for instrument errors when possible and to increase the fidelity of an onboard self flight simulator. This research will enable virtual failure enhanced flight simulations to predict the outcome of different flight plans before they are executed. DDDAS will thus support better-informed decision making for pilots in emergency conditions and it will also be applicable to autonomous unmanned air and space vehicles. Furthermore, new mathematical techniques and associated software for data streaming analytics will likely be applicable to other domains, including health monitoring and spacesuit technologies. The PI intends to make all developed programming technology, run-time middleware, and flight data available to the community in open-source form.This research project will investigate methodologies and develop new techniques in several fundamental research directions as they pertain to the proposed DDDAS model: (1) This project will enhance dataflow concurrent programming to make it fault-cognizant and fault-tolerant. In particular, this work will extend the unbound and bound states of dataflow variables with a new dataflow variable state: correlated uncertainly bound. This enhancement will allow software developers to explicitly model distributed redundant data streams to be able to recognize and tolerate failures with quantified uncertainty. The project will also study the impact of this enhancement on the heterogeneity and asynchrony tolerance already afforded by the dataflow concurrent programming model. (2) This project will investigate extensions to logic programming to support stochastic reasoning. In particular, the PI will create language extensions to standard Horn clause-based knowledge bases to incorporate probabilities. Additional extensions will specifically support spatial and temporal data streams. Furthermore, the PI will create incremental reasoning algorithms to be able to recompute queries efficiently as applications dynamically receive new data. (3) Finally, this project will investigate cloud-based techniques for scalable data analytics. The PI will explore the use of hybrid (private and public) clouds for online (real-time) data analytics as well as for offline data storage and processing. Elasticity and scalability of data streaming, storage, and processing techniques on hybrid clouds will enable multi-criteria optimization. Policies will include optimizing for analytics performance, aircraft-to-cloud communication, and/or cost. 
The DDDAS model will be applied to flight decision support systems in emergency conditions. Specific activities will include: i) creating multi-fidelity models and incremental algorithms that will allow DDDAS to inject data from aircraft sensors dynamically, ii) formalizing the notion of aircraft damage/failure profiles, and iii) evaluating the new mathematical and computational techniques with actual flight accident data.
动态数据驱动航空电子系统(DDDAS)有可能赋予飞机动态使用传感器数据来检测故障条件和准确模拟飞行计划的能力,以便在紧急情况下支持飞行员的决策。Pi Varela将研究如何通过将测量数据与预先计算的错误签名和损坏性能特征相匹配来动态检测数据错误和设备故障。一旦检测到故障类型,冗余数据将在可能的情况下用于纠正仪器错误,并提高机载自飞模拟器的保真度。这项研究将使虚拟故障增强型飞行模拟能够在不同的飞行计划执行之前预测结果。因此,DDDAS将为飞行员在紧急情况下更知情的决策提供支持,它也将适用于自动无人驾驶航空和空间飞行器。此外,用于数据流分析的新数学技术和相关软件很可能适用于其他领域,包括健康监测和航天服技术。PI的目的是将所有开发的编程技术、运行时中间件和飞行数据以开源的形式提供给社区。本研究项目将在与所提出的DDDAS模型相关的几个基础研究方向上研究方法和开发新技术:(1)本项目将增强数据流并发编程,使其具有容错能力和容错能力。特别是,这项工作将用一种新的数据流变量状态来扩展数据流变量的未绑定和绑定状态:相关不确定绑定。这一增强将允许软件开发人员显式地对分布式冗余数据流进行建模,以便能够识别和容忍具有量化不确定性的故障。该项目还将研究这一增强对数据流并发编程模型已经提供的异构性和异步性容忍度的影响。(2)这个项目将研究逻辑编程的扩展,以支持随机推理。特别是,PI将为基于Horn子句的标准知识库创建语言扩展,以纳入概率。其他扩展将专门支持空间和时间数据流。此外,PI将创建增量推理算法,以便能够在应用程序动态接收新数据时高效地重新计算查询。(3)最后,本项目将研究基于云的可扩展数据分析技术。PI将探索使用混合(私有和公共)云进行在线(实时)数据分析以及离线数据存储和处理。混合云上数据流、存储和处理技术的灵活性和可扩展性将支持多标准优化。策略将包括优化分析性能、飞机到云通信和/或成本。DDDAS模型将应用于紧急情况下的飞行决策支持系统。具体活动将包括:i)创建多保真模型和增量算法,使DDDAS能够动态注入来自飞机传感器的数据;ii)将飞机损坏/故障分布的概念正式化;iii)用实际飞行事故数据评估新的数学和计算技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Varela其他文献
ecologia urbana experiencias en america latina
拉丁美洲城市生态体验
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
S. Caula;Carlos Varela;Alejandro Álvarez;G. Flórez - 通讯作者:
G. Flórez
Foreign players, team production, and technical efficiency: Evidence from European soccer
外籍球员、球队表现和技术效率:来自欧洲足球的证据
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0.8
- 作者:
David Boto‐García;Carlos Varela;Álvaro Muñiz - 通讯作者:
Álvaro Muñiz
Formal verification of timely knowledge propagation in airborne networks
- DOI:
10.1016/j.scico.2024.103184 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Saswata Paul;Chris McCarthy;Stacy Patterson;Carlos Varela - 通讯作者:
Carlos Varela
On Formal Verification of Data-Driven Flight Awareness: Leveraging the Cramér-Rao Lower Bound of Stochastic Functional Time Series Models
数据驱动的飞行意识的形式验证:利用随机函数时间序列模型的 Cramér-Rao 下界
- DOI:
10.1007/978-3-031-52670-1_5 - 发表时间:
2022 - 期刊:
- 影响因子:3.5
- 作者:
Peiyuan Zhou;S. Paul;A. Dutta;Carlos Varela;F. Kopsaftopoulos - 通讯作者:
F. Kopsaftopoulos
Physalia physalis Poison Depolarizes Beta Cell Membrane and Increases Insulin Secretion
- DOI:
10.1016/j.bpj.2009.12.605 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Carlos Manlio Díaz-García;Carmen Sanchez-Soto;Deyanira Fuentes-Silva;Neivys Garcia Delgado;Acela Pedroso;Carlos Varela;Myriam Ortiz-García;Adela Rodríguez;Guillermo Mendoza-Hernández;Olga Castañeda Pasarón;Marcia Hiriart - 通讯作者:
Marcia Hiriart
Carlos Varela的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos Varela', 18)}}的其他基金
CAREER: Middleware and Programming Technology for Grid Computing
职业:网格计算的中间件和编程技术
- 批准号:
0448407 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
- 批准号:
1833553 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER-DynamicData: Generative Statistical Modeling for Dynamic and Distributed Data
EAGER-DynamicData:动态和分布式数据的生成统计建模
- 批准号:
1462230 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER-DynamicData: Collaborative Research: Data-driven morphing of parsimonious models for the description of transient dynamics in complex systems
EAGER-DynamicData:协作研究:数据驱动的简约模型变形,用于描述复杂系统中的瞬态动力学
- 批准号:
1462254 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER-DynamicData: A Scalable Framework for Data-Driven Real-Time Event Detection in Power Systems
EAGER-DynamicData:电力系统中数据驱动的实时事件检测的可扩展框架
- 批准号:
1462311 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER-DynamicData: Reducing Orbital Position Uncertainty with Ensembles of Upper Atmospheric Models
EAGER-DynamicData:利用高层大气模型集合降低轨道位置不确定性
- 批准号:
1462363 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER-DynamicData: Machine Intelligence for Dynamic Data-Driven Morphing of Nodal Demand in Smart Energy Systems
合作研究:EAGER-DynamicData:智能能源系统中节点需求动态数据驱动变形的机器智能
- 批准号:
1462393 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER- DynamicData: Novel Approaches for Optimization, Control, and Learning in Distributed Networks
EAGER-DynamicData:分布式网络中优化、控制和学习的新方法
- 批准号:
1462397 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER-DynamicData: Collaborative: Exploiting the Dynamically Architectural Configurability for Compressed Sensing
EAGER-DynamicData:协作:利用压缩感知的动态架构可配置性
- 批准号:
1462473 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER-DynamicData: Collaborative Research: Data-driven morphing of parsimonious models for the description of transient dynamics in complex systems
EAGER-DynamicData:协作研究:数据驱动的简约模型变形,用于描述复杂系统中的瞬态动力学
- 批准号:
1462241 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER-DynamicData: Machine Intelligence for Dynamic Data-Driven Morphing of Nodal Demand in Smart Energy Systems
合作研究:EAGER-DynamicData:智能能源系统中节点需求动态数据驱动变形的机器智能
- 批准号:
1462404 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant