CAREER: Optimizations for Sparse Solutions and Applications

职业:稀疏解决方案和应用程序的优化

基本信息

  • 批准号:
    0748839
  • 负责人:
  • 金额:
    $ 40.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-05-15 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

In many areas such as signal processing, control, statistics, learning, inverse problems, and management, "large" data sets are often processed to find "small" solutions, those depending ultimately upon a small number of factors. Since these solutions tend to be sparse in a way, it is possible for methods that pick out the sparse solutions to find them from a reduced number of indirect measurements compared to what are usually considered necessary. This is the emerging technology of compressed sensing (CS). In this research, the PI proposes to study a broad range of issues and techniques to advance CS. His proposed reseach includes the introduction of new methodolgies for exploiting solution sparsity to accelerate CS computation, the development of algorithms that utilize operations requiring low storage and maintain robustness to noise and errors in data, and the discovery of efficient methods for minimizing the l1-norms of wide classes of functions such as first and higher-order differences. This project will include an integrated educational program involving a new course, one Ph.D. student, and the participation in the Rice-Houston AGEP program in producing competitive women and minority graduate students.The new emerging technology of "compressed sensing" is a complement to traditional data compression. While the traditional technology encodes digital data using fewer bits in order to save storage and transmission time, the new technology can significantly reduce the time, energy, and cost associated with the acquisition of digital data. This is achieved by acquiring digit information of an object of interest from a reduced number of obervations than what is usually necessary. For example, the life of an aeriel such as a space telescope can be greatly extended due to a lower sampling rate (and thus a lower power demand). Hyperspectral and infrared imaging devices can produce the same images with smaller sensors, or if with the same sensors, images at higher resolution. As such, the new technology can lead to breakthroughs for applications where the bottleneck lies in the high cost of data acquisition.
在许多领域,如信号处理,控制,统计,学习,逆问题和管理,“大”的数据集往往被处理,以找到“小”的解决方案,这些最终取决于少数因素。由于这些解决方案往往是稀疏的方式,它是可能的方法,挑选出稀疏的解决方案,以找到他们从一个减少数量的间接测量相比,通常被认为是必要的。这就是压缩传感(CS)的新兴技术。在这项研究中,PI建议研究广泛的问题和技术,以推进CS。他提出的研究包括引入新的方法学来利用解的稀疏性来加速CS计算,开发利用低存储操作并保持对数据中噪声和错误的鲁棒性的算法,以及发现有效的方法来最小化宽类函数的l1范数,如一阶和高阶差分。该项目将包括一个综合教育计划,涉及一个新的课程,一个博士学位。学生,并参与赖斯-休斯顿AGEP计划,在生产有竞争力的妇女和少数民族研究生。新兴的技术“压缩传感”是一个补充,传统的数据压缩。虽然传统技术使用较少的比特对数字数据进行编码以节省存储和传输时间,但新技术可以显着减少与获取数字数据相关的时间,能源和成本。这是通过从比通常所需的观察次数减少的观察次数中获取感兴趣对象的数字信息来实现的。例如,由于较低的采样率(以及因此较低的功率需求),诸如太空望远镜的天线的寿命可以大大延长。高光谱和红外成像设备可以用更小的传感器产生相同的图像,或者如果使用相同的传感器,则可以产生更高分辨率的图像。因此,新技术可以为瓶颈在于数据采集成本高的应用带来突破。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wotao Yin其他文献

ExtraPush for consensus optimization with convex differentiable objective functions over a directed network
ExtraPush 通过有向网络上的凸可微目标函数实现共识优化
Learning Collaborative Sparsity Structure via Nonconvex Optimization for Feature Recognition
通过非凸优化学习协作稀疏结构进行特征识别
One condition for solution uniqueness and robustness of both l1-synthesis and l1-analysis minimizations
l1 综合和 l1 分析最小化的解决方案唯一性和鲁棒性的一个条件
Expressive Power of Graph Neural Networks for (Mixed-Integer) Quadratic Programs
(混合整数)二次规划的图神经网络的表达能力
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ziang Chen;Xiaohan Chen;Jialin Liu;Xinshang Wang;Wotao Yin
  • 通讯作者:
    Wotao Yin
Decentralized jointly sparse signal recovery by reweighted lq minimization
通过重新加权 lq 最小化分散式联合稀疏信号恢复

Wotao Yin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wotao Yin', 18)}}的其他基金

Operator Splitting Methods: Certificates and Second-Order Acceleration
算子拆分方法:证书和二阶加速
  • 批准号:
    1720237
  • 财政年份:
    2017
  • 资助金额:
    $ 40.58万
  • 项目类别:
    Standard Grant
EAGER- DynamicData: Novel Approaches for Optimization, Control, and Learning in Distributed Networks
EAGER-DynamicData:分布式网络中优化、控制和学习的新方法
  • 批准号:
    1462397
  • 财政年份:
    2015
  • 资助金额:
    $ 40.58万
  • 项目类别:
    Standard Grant
Computation of Large-Scale, Multi-Dimensional Sparse Optimization Problems
大规模、多维稀疏优化问题的计算
  • 批准号:
    1317602
  • 财政年份:
    2013
  • 资助金额:
    $ 40.58万
  • 项目类别:
    Continuing Grant
CAREER: Optimizations for Sparse Solutions and Applications
职业:稀疏解决方案和应用程序的优化
  • 批准号:
    1349855
  • 财政年份:
    2013
  • 资助金额:
    $ 40.58万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
  • 批准号:
    2340453
  • 财政年份:
    2024
  • 资助金额:
    $ 40.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330195
  • 财政年份:
    2024
  • 资助金额:
    $ 40.58万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330196
  • 财政年份:
    2024
  • 资助金额:
    $ 40.58万
  • 项目类别:
    Standard Grant
SBIR Phase I: Trajectory Optimizations and Learned Foliage Manipulation to Accelerate Throughput in Automated Strawberry Harvesting
SBIR 第一阶段:轨迹优化和学习叶子操纵,以提高自动化草莓收获的吞吐量
  • 批准号:
    2322402
  • 财政年份:
    2023
  • 资助金额:
    $ 40.58万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 40.58万
  • 项目类别:
    Standard Grant
Robust Optimizations For Equity-Linked Products
股票挂钩产品的稳健优化
  • 批准号:
    RGPIN-2020-06821
  • 财政年份:
    2022
  • 资助金额:
    $ 40.58万
  • 项目类别:
    Discovery Grants Program - Individual
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
  • 批准号:
    2318628
  • 财政年份:
    2022
  • 资助金额:
    $ 40.58万
  • 项目类别:
    Standard Grant
Applied Harmonic Analysis Methods for Non-Convex Optimizations and Low-Rank Matrix Analysis
非凸优化和低阶矩阵分析的应用调和分析方法
  • 批准号:
    2108900
  • 财政年份:
    2021
  • 资助金额:
    $ 40.58万
  • 项目类别:
    Standard Grant
CAREER: SHF: Chiplet-Package Co-Optimizations for 2.5D Heterogeneous SoCs with Low-Overhead IOs
职业:SHF:具有低开销 IO 的 2.5D 异构 SoC 的 Chiplet 封装协同优化
  • 批准号:
    2047388
  • 财政年份:
    2021
  • 资助金额:
    $ 40.58万
  • 项目类别:
    Continuing Grant
Robust Optimizations For Equity-Linked Products
股票挂钩产品的稳健优化
  • 批准号:
    RGPIN-2020-06821
  • 财政年份:
    2021
  • 资助金额:
    $ 40.58万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了