EAGER-DynamicData: Collaborative: Exploiting the Dynamically Architectural Configurability for Compressed Sensing
EAGER-DynamicData:协作:利用压缩感知的动态架构可配置性
基本信息
- 批准号:1462498
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sensors or sensing systems are increasingly critical in a variety of applications including national security, surveillance monitoring and health care. Those systems should function with minimal hardware recourses, minimal communications and minimal computation overhead, and these efficiencies can dramatically improve the performance, reliability and usability, which can broaden the overall application scope of sensor systems. This EAGER project is to pursue preliminary results of dynamic configurability of architectural and circuit models in sensing systems, and the proposed research will have significant impacts on a range of sensing applications under the resource-constrained environment. For example, in large-scale sensor networks or implantable sensors, energy is tightly constrained. The ultimate goal of the research is to exploit the configurability and dynamics of sensing systems to improve the overall system efficiency. This project serves as an expedition to investigate the dynamically architectural sensing techniques and may open a new research direction of theory and practice in the signal acquisition. Upon the success of this project, a better performance-energy tradeoff in the sensing system will be obtained, which can further strengthen its advantage compared to other sampling techniques, and extend its application regime. To broaden the impacts of this project, PIs will disseminate the research results through multiple channels, including conference presentation, journal publication and open research material online. PIs also plan to integrate the research outcomes into the curriculum development and develop a new research seminar on related topics. The project will provide research opportunities for undergraduate students and researchers from underrepresented groups.Specifically, this EAGER project investigates the dynamic configurability of parameterized Compressed Sensing architecture. With the physical and architectural models, the Compressed Sensing architecture is flexible and provides a larger design/configuration space, and can adapt towards different signal structures and use conditions. The research work is expected to explore a deeper bound of the performance-energy by exploiting the architectural configurability with physical models. To this aim, a set of research tasks will be performed in this project, and the technical thrusts can be summarized from three aspects. First, the project will explore the configurability at both architectural- and circuit- levels in Compressed Sensing, incorporating signal structure variations. Multiple factors in the Compressed Sensing will be investigated. Second, by integrating physical models into the Compressed Sensing architecture, a larger design space will be discovered and defined. The benefit of the performance-energy trade-off will be demonstrated in the new space. Third, a set of novel algorithms will be developed for efficient configuration search in the design space. Several deterministic and heuristic strategies will be investigated in the project.
传感器或传感系统在包括国家安全、监视监测和医疗保健在内的各种应用中越来越重要。这些系统应该以最少的硬件资源、最少的通信和最小的计算开销来运行,这些效率可以显著提高传感器系统的性能、可靠性和可用性,从而拓宽传感器系统的整体应用范围。这个迫切的项目是追求传感系统中体系结构和电路模型的动态可配置性的初步结果,所提出的研究将对资源受限环境下的一系列传感应用产生重大影响。例如,在大规模传感器网络或植入式传感器中,能量受到严格限制。研究的最终目标是开发传感系统的可配置性和动态化,以提高整个系统的效率。本课题是对建筑动态传感技术研究的一次探索,可能为信号采集开辟一个新的理论和实践研究方向。该项目成功后,将在传感系统的性能和能量之间取得更好的权衡,这将进一步加强其相对于其他采样技术的优势,扩大其应用范围。为了扩大这一项目的影响,私人投资机构将通过多种渠道传播研究成果,包括会议报告、期刊出版物和网上公开研究材料。PIS还计划将研究成果纳入课程开发,并就相关主题开发一个新的研究研讨会。该项目将为本科生和来自代表性不足群体的研究人员提供研究机会。具体地说,这个渴望的项目研究了参数化压缩感知体系结构的动态可配置性。通过物理模型和体系结构模型,压缩感知体系结构灵活,提供了更大的设计/配置空间,可以适应不同的信号结构和使用条件。这项研究工作希望通过利用物理模型的建筑可配置性来探索性能-能量的更深层次的界限。为此,本项目将开展一系列研究工作,技术攻关可从三个方面进行总结。首先,该项目将探索在压缩感知中的架构和电路级别的可配置性,结合信号结构变化。对压缩感知中的多种因素进行了研究。其次,通过将物理模型集成到压缩感知体系结构中,将发现和定义更大的设计空间。性能-能源权衡的好处将在新的领域得到展示。第三,将开发一套新颖的算法,以在设计空间中进行高效的配置搜索。在该项目中将研究几种确定性和启发式策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenyao Xu其他文献
Information Reuse to Accelerate Customized Product Slicing for Additive Manufacturing
信息重用加速增材制造的定制产品切片
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Hang Ye;Tsz;Chi Zhou;Wenyao Xu - 通讯作者:
Wenyao Xu
Exploiting Mallows Distance to Quantify EEG Distribution for Personal Identification
利用锦葵距离量化脑电图分布以进行个人识别
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Baicheng Chen;Kun Woo Cho;Chenhan Xu;Feng Lin;Zhanpeng Jin;Wenyao Xu - 通讯作者:
Wenyao Xu
Anomalous Pattern Recognition in Vital Health Signals via Multimodal Fusion
通过多模态融合识别重要健康信号中的异常模式
- DOI:
10.1007/978-3-030-95593-9_12 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Soumyadeep Bhattacharjee;Huining Li;Wenyao Xu - 通讯作者:
Wenyao Xu
Analyzing dynamic components of social scene parsing strategy in autism spectrum disorder
分析自闭症谱系障碍社交场景解析策略的动态组成部分
- DOI:
10.1109/bhi.2016.7455852 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Chen Song;Aosen Wang;K. Doody;Michelle Hartley;Jana Mertz;Feng Lin;Wenyao Xu - 通讯作者:
Wenyao Xu
PDLens: smartphone knows drug effectiveness among Parkinson's via daily-life activity fusion
PDLens:智能手机通过日常生活活动融合了解帕金森病的药物有效性
- DOI:
10.1145/3372224.3380889 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Hanbin Zhang;Gabriel Guo;Chen Song;Chenhan Xu;K. Cheung;Jasleen Alexis;Huining Li;Dongmei Li;Kun Wang;Wenyao Xu - 通讯作者:
Wenyao Xu
Wenyao Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wenyao Xu', 18)}}的其他基金
CyberTraining: Implementation: Small: Infrastructure Cybersecurity Curriculum Development and Training for Advanced Manufacturing Research Workforce
网络培训:实施:小型:基础设施网络安全课程开发和先进制造研究人员培训
- 批准号:
2230025 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
IRES Track I: International Research Experience for Students on Assistive Technology for Aging and Disability
IRES 轨道 I:老龄化和残疾辅助技术学生的国际研究经验
- 批准号:
2106996 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
REU Site: Frontier Technologies for Biometrics and Authentication
REU 网站:生物识别和身份验证前沿技术
- 批准号:
2050910 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
EAGER: SARE: Collaborative Research: Exploring and Mitigating Attacks of Millimeter-wave Radar Sensors in Autonomous Vehicles
EAGER:SARE:协作研究:探索和减轻自动驾驶汽车中毫米波雷达传感器的攻击
- 批准号:
2028872 - 财政年份:2020
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: Cardiac Password: Exploring a Non-Contact and Continuous Approach to Secure User Authentication
SaTC:核心:小型:协作:心脏密码:探索非接触式和连续的安全用户身份验证方法
- 批准号:
1718375 - 财政年份:2017
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
TWC SBE: Medium: Collaborative: Brain Hacking: Assessing Psychological and Computational Vulnerabilities in Brain-based Biometrics
TWC SBE:媒介:协作:大脑黑客:评估基于大脑的生物识别技术中的心理和计算漏洞
- 批准号:
1564104 - 财政年份:2016
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
EAGER: Cybermanufacturing: Software/Hardware Combined Acceleration for 3D Printing in Mass Customization
EAGER:网络制造:大规模定制中 3D 打印的软件/硬件组合加速
- 批准号:
1547167 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
TWC SBE: Small: Collaborative: Brain Password: Exploring A Psychophysiological Approach for Secure User Authentication
TWC SBE:小型:协作:大脑密码:探索安全用户身份验证的心理生理学方法
- 批准号:
1423061 - 财政年份:2014
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
相似海外基金
EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
- 批准号:
1833553 - 财政年份:2018
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
EAGER-DynamicData: Generative Statistical Modeling for Dynamic and Distributed Data
EAGER-DynamicData:动态和分布式数据的生成统计建模
- 批准号:
1462230 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
EAGER-DynamicData: Collaborative Research: Data-driven morphing of parsimonious models for the description of transient dynamics in complex systems
EAGER-DynamicData:协作研究:数据驱动的简约模型变形,用于描述复杂系统中的瞬态动力学
- 批准号:
1462254 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
EAGER-DynamicData: A Scalable Framework for Data-Driven Real-Time Event Detection in Power Systems
EAGER-DynamicData:电力系统中数据驱动的实时事件检测的可扩展框架
- 批准号:
1462311 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
EAGER-DynamicData: Reducing Orbital Position Uncertainty with Ensembles of Upper Atmospheric Models
EAGER-DynamicData:利用高层大气模型集合降低轨道位置不确定性
- 批准号:
1462363 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Collaborative Research: EAGER-DynamicData: Machine Intelligence for Dynamic Data-Driven Morphing of Nodal Demand in Smart Energy Systems
合作研究:EAGER-DynamicData:智能能源系统中节点需求动态数据驱动变形的机器智能
- 批准号:
1462393 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
EAGER- DynamicData: Novel Approaches for Optimization, Control, and Learning in Distributed Networks
EAGER-DynamicData:分布式网络中优化、控制和学习的新方法
- 批准号:
1462397 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
EAGER-DynamicData: Collaborative: Exploiting the Dynamically Architectural Configurability for Compressed Sensing
EAGER-DynamicData:协作:利用压缩感知的动态架构可配置性
- 批准号:
1462473 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
EAGER-DynamicData: Collaborative Research: Data-driven morphing of parsimonious models for the description of transient dynamics in complex systems
EAGER-DynamicData:协作研究:数据驱动的简约模型变形,用于描述复杂系统中的瞬态动力学
- 批准号:
1462241 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Collaborative Research: EAGER-DynamicData: Machine Intelligence for Dynamic Data-Driven Morphing of Nodal Demand in Smart Energy Systems
合作研究:EAGER-DynamicData:智能能源系统中节点需求动态数据驱动变形的机器智能
- 批准号:
1462404 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Standard Grant














{{item.name}}会员




