Ultrafast Velocity Measurement of Shock Wave using Microwave Photonic Velocimetry
使用微波光子测速仪测量冲击波的超快速度
基本信息
- 批准号:1462656
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports fundamental research on a novel sensing modality, namely, microwave photonic velocimetry (MPV). In shock wave experimentation, velocimetry is the measurement of the speed of a shock wave as it develops, propagates, and fades. This provides critical information on shock wave behavior. The goal of this project is to support the measurement of the velocity of ultrafast shock waves, traveling at speeds in the order of several tens of km/s, in-situ and in real-time. This will enable the study of energetic materials, and eventually lead to much safer industrial workplaces where explosions may pose a hazard. Robust and accurate velocimetry that can measure ultrafast shock waves is an outstanding technical challenge that limits our understanding of shock wave physics and chemistry. If successful, the MPV technology will fill this void by substantially expanding our knowledge of materials' ability to detonate under a wide variety of physical conditions (temperature, pressure, concentration, etc.). Thus, breakthroughs in MPV as pursued in this project, will have significant societal benefits in preventing disasters and improving safety in hazardous environments. In particular, MPV is anticipated to be an enabling tool in the safe handling and storage of non-ideal (borderline) explosives. These are materials that are conventionally rated as safe, but may become a deadly threat in workplaces under certain conditions. Specific research objectives include understanding and characterizing the MPV concept, investigating novel signal processing methodologies, and validating this novel sensing modality using large-scale, outdoor detonation tests. The direct outcome is the fundamental knowledge, implementation, and demonstration of the MPV concept. Key innovations include: 1) the innovative use of interactions between microwave and optical waves, enabling the creation of a precise, robust, and low-cost velocimetery, 2) the innovative integration of optical frequency comb technologies in the MPV system to precisely separate elements measured in the frequency-domain, 3) the novel MPV probe with integrated graded index fiber (GIF) collimator, which significantly enhances MPV's performance, 4) a novel signal processing algorithm that intelligently reconstructs the velocity history profiles of explosion events, and 5) enhanced multiplexing capability allowing for simultaneous, multi-probe shock wave velocity measurement.
该奖项支持一种新的传感模式,即微波光子测速(MPV)的基础研究。在冲击波实验中,测速是测量冲击波在发展、传播和衰减时的速度。这提供了关于冲击波行为的关键信息。该项目的目标是支持现场和实时测量超快冲击波的速度,其速度约为几十公里/秒。这将使高能材料的研究成为可能,并最终导致更安全的工业工作场所,爆炸可能会造成危险。能够测量超快冲击波的鲁棒且精确的速度测量是一项突出的技术挑战,限制了我们对冲击波物理和化学的理解。如果成功,MPV技术将通过大幅扩展我们对材料在各种物理条件(温度、压力、浓度等)下引爆能力的了解来填补这一空白。因此,该项目所追求的MPV突破将在预防灾害和提高危险环境中的安全性方面产生重大的社会效益。特别是,MPV预计将成为安全处理和储存非理想(临界)爆炸物的有利工具。这些材料通常被认为是安全的,但在某些条件下可能成为工作场所的致命威胁。具体的研究目标包括理解和表征MPV概念,研究新的信号处理方法,并使用大规模的户外爆炸测试来验证这种新的传感方式。直接的结果是MPV概念的基本知识,实施和演示。主要创新包括:1)微波和光波之间的相互作用的创新使用,使得能够创建精确、鲁棒和低成本的速度计,2)在MPV系统中创新地集成光学频率梳技术,以精确地分离在频域中测量的元件,3)具有集成渐变折射率光纤(GIF)准直器的新型MPV探头,其显著增强MPV的性能,4)一种新颖的信号处理算法,其智能地重建爆炸事件的速度历史轮廓,以及5)增强的多路复用能力,允许同时进行多探头冲击波速度测量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tao Wei其他文献
Solvable lattice sums and quadratic Dirichlet L-values
可解晶格和和二次狄利克雷 L 值
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Tao Wei;郭学军 - 通讯作者:
郭学军
Continuous carbon fiber/crosslinkable poly(ether ether ketone) laminated composites with outstanding mechanical properties, robust solvent resistance and excellent thermal stability
连续碳纤维/可交联聚醚醚酮层压复合材料具有出色的机械性能、强大的耐溶剂性和优异的热稳定性
- DOI:
10.1016/j.compscitech.2018.06.020 - 发表时间:
2018-09 - 期刊:
- 影响因子:9.1
- 作者:
Zhang Yunhe;Tao Wei;Zhang Yu;Tang Lin;Gu Junwei;Jiang Zhenhua - 通讯作者:
Jiang Zhenhua
Modularized Morphing of Neural Networks
神经网络的模块化变形
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Tao Wei;Changhu Wang;C. Chen - 通讯作者:
C. Chen
The relationship between digit ratio and sexual orientation in a Chinese Yunnan Han population
中国云南汉族人群指长比与性取向的关系
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Caixia Li;M. Jia;Yanling Ma;H. Luo;Qi Li;Y. K. Wang;Zhenhui Li;Wenli Ding;Renzhong Zhang;Lijun Song;Lan Cao;Min Guo;Tao Wei;Lin Lu - 通讯作者:
Lin Lu
Phase Field Simulation of Solidified Multiple Grains
凝固多晶粒的相场模拟
- DOI:
10.4028/www.scientific.net/amr.602-604.1874 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Hong;Tao Wei;Xiang - 通讯作者:
Xiang
Tao Wei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tao Wei', 18)}}的其他基金
CAREER: Multiscale Simulations of Iron Oxide Nanoparticle-Protein Electron Transfer
职业:氧化铁纳米粒子-蛋白质电子转移的多尺度模拟
- 批准号:
2400531 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
CAREER: Multiscale Simulations of Iron Oxide Nanoparticle-Protein Electron Transfer
职业:氧化铁纳米粒子-蛋白质电子转移的多尺度模拟
- 批准号:
1943999 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
A Distributed Coaxial Cable Strainmeter for Earth Monitoring
用于地球监测的分布式同轴电缆应变仪
- 批准号:
1442623 - 财政年份:2015
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
XPS:FULL:SDA: Reflex Tree - A New Computer and Communication Architecture for Future Smart Cities
XPS:FULL:SDA:反射树 - 未来智能城市的新计算机和通信架构
- 批准号:
1439011 - 财政年份:2014
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
相似海外基金
Development of Velocity Measurement for High-speed Micro and Nano Projectile and Impact Testing for Surface Modifications
高速微纳米弹丸速度测量及表面改性冲击测试的发展
- 批准号:
23K17724 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Measurement of Electron Drift Velocity in GaN under High Electric Field
高电场下GaN电子漂移速度的测量
- 批准号:
23K13362 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Simultaneous measurement of turbulent velocity and gas concentration
同时测量湍流速度和气体浓度
- 批准号:
573735-2022 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
University Undergraduate Student Research Awards
Pathfinding of high-precision radial-velocity measurement: from direct measurement of Universe's expansion history to spectroscopy of terrestrial planets
高精度径向速度测量的探路:从宇宙膨胀历史的直接测量到类地行星的光谱学
- 批准号:
22H00151 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Second earth search by high-precision line-of-sight velocity measurement using visible ultra-broadband laser comb
利用可见光超宽带激光梳高精度视距速度测量进行二次地球搜索
- 批准号:
21H04500 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Precise elastic wave velocity measurement under mantle transition region to lower mantle conditions
地幔过渡区到下地幔条件下的精确弹性波速度测量
- 批准号:
21H01196 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Measurement of histone modification propagation velocity in a single living cell using CRISPR and BiFC
使用 CRISPR 和 BiFC 测量单个活细胞中的组蛋白修饰传播速度
- 批准号:
21K06020 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High Speed System for 3 dimensional measurement of velocity fields and particle or bubble trajectories
用于速度场和颗粒或气泡轨迹 3 维测量的高速系统
- 批准号:
444994527 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Major Research Instrumentation
Shot Velocity Measurement and the Effect of Shot Material on Residual Stress in Shot Peening
喷丸速度测量及丸料对喷丸残余应力的影响
- 批准号:
20K05158 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Higher precision measurement on mechanical properties of materials based on the Taylor impact test for reductions in damage from hyper velocity impacts
基于泰勒冲击试验对材料机械性能进行更高精度的测量,以减少超高速冲击造成的损坏
- 批准号:
20H02353 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)