A Phase Field Arlequin Model for Resolving Nonlocal Hydromechanical Effects of Porous Media Across Time and Spatial Scales

用于解决多孔介质在时间和空间尺度上的非局部流体力学效应的相场 Arlequin 模型

基本信息

  • 批准号:
    1462760
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-15 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Porous media are common to engineered and natural systems. This class of materials includes amongst others bone, sand, rock and concrete. Understanding how the microscopic defects and flaws of porous media evolve is of great importance for predicting large-scale response. This award supports fundamental research on predicting and analyzing mechanical behaviors of fluid infiltrating porous media. Emphasis is placed on problems that involve strong near- and far-field interactions, such as hydraulic fracture operations and preventing re-activation of faults. The framework will adaptively activate material models of different levels of sophistication based on the need to extract small-scale information. This adaptive nature leads to highly efficient simulations where all CPU time and computational resources are wisely allocated for the most important hydro-mechanical events in the most important region at the most critical time. As a result, this highly efficient model will help industries and engineers predicting material failures more accurately and faster and therefore benefit to the US economy and society. The research is fully integrated with education activities that use 3D printers to demonstrate the fundamental physics of porous media. Outreach activities at the underprivileged school district will help broaden participation of underrepresented groups in research and positively impact engineering education. This award supports research on a new phase-field based, adaptive Arlequin multiscale model for poromechanics. While classic Arlequin method uses partition of unity on energy functional to couple small- and large-scale models in a fixed domain of interest, this new work will allow fine-scale region to enlarge, shrink or vanished via an evolving phase field. The fact that phase field has finite thickness will be exploited to seamlessly create evolving transition zone between fine- and coarse-scale models. The coupled numerical model will be implemented in an operator-splitting scheme where displacement, Darcy's velocity, pore pressure and the phase fields are updated asynchronously. By overcoming the computational barrier due to coupling effect across length scale, the concurrent multiscale model will provide fresh insight in understanding the fundamental role of pore-fluid in the formation of localized band, cracks propagations in porous media with defects, flaws and other small-scale geometrical features.
多孔介质是工程系统和自然系统中常见的。这类材料包括骨头、沙子、岩石和混凝土等。了解多孔介质的微观缺陷和缺陷是如何演化的,对于预测大尺度响应是非常重要的。该奖项支持预测和分析流体渗透多孔介质力学行为的基础研究。重点放在涉及强近场和远场相互作用的问题上,如水力压裂作业和防止断层重新激活。 该框架将根据提取小规模信息的需要,自适应地激活不同复杂程度的材料模型。这种自适应性质导致高效的模拟,其中所有CPU时间和计算资源被明智地分配给最重要区域中最重要的水力机械事件。 因此,这种高效的模型将帮助行业和工程师更准确、更快地预测材料失效,从而造福美国经济和社会。 该研究与使用3D打印机演示多孔介质基本物理的教育活动完全集成。在贫困学区开展的外联活动将有助于扩大代表性不足的群体对研究的参与,并对工程教育产生积极影响。该奖项支持一个新的相场为基础的研究,自适应Arlequin多尺度模型的孔隙力学。虽然经典的Arlequin方法使用能量泛函上的单位分割来耦合感兴趣的固定域中的小尺度和大尺度模型,但这项新工作将允许精细尺度区域通过不断变化的相场放大,缩小或消失。相场具有有限厚度的事实将被利用来无缝地创建精细和粗尺度模型之间的演变过渡区。耦合的数值模型将实施在一个运营商分裂计划,位移,达西的速度,孔隙压力和相场的更新异步。 并行多尺度模型克服了长度尺度耦合效应的计算障碍,为理解孔隙流体在含缺陷、裂纹等小尺度几何特征的多孔介质中局部带形成、裂纹扩展等过程中的基本作用提供了新的思路。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PREFACE: COMPUTATIONAL POROMECHANICS
前言:计算孔隙力学
ALBANY: USING COMPONENT-BASED DESIGN TO DEVELOP A FLEXIBLE, GENERIC MULTIPHYSICS ANALYSIS CODE
奥尔巴尼:使用基于组件的设计开发灵活的通用多物理场分析代码
  • DOI:
    10.1615/intjmultcompeng.2016017040
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Salinger, Andrew G.;Bartlett, Roscoe A.;Bradley, Andrew M.;Chen, Qiushi;Demeshko, Irina P.;Gao, Xujiao;Hansen, Glen A.;Mota, Alejandro;Muller, Richard P.;Nielsen, Erik
  • 通讯作者:
    Nielsen, Erik
Multiscale analysis of shear failure of thick-walled hollow cylinder in dry sand
  • DOI:
    10.1680/jgele.15.00149
  • 发表时间:
    2016-04
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    N. Guo;Jidong Zhao;WaiChing Sun
  • 通讯作者:
    N. Guo;Jidong Zhao;WaiChing Sun
A semi-implicit discrete-continuum coupling method for porous media based on the effective stress principle at finite strain
Data-Driven Discrete-Continuum Method for Partially Saturated Micro-Polar Porous Media
部分饱和微极性多孔介质的数据驱动离散连续方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WaiChing Sun其他文献

A machine‐learning supported multi‐scale LBM‐TPM model of unsaturated, anisotropic, and deformable porous materials
机器学习支持的不饱和、各向异性和可变形多孔材料的多尺度 LBM-TPM 模型
Final Report: A multiscale analysis on the moisture effect of dynamics responses of granular matters
  • DOI:
    10.13140/rg.2.2.33632.69121
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    WaiChing Sun
  • 通讯作者:
    WaiChing Sun
A stabilized finite element formulation for monolithic thermo‐hydro‐mechanical simulations at finite strain
Lie-group interpolation and variational recovery for internal variables
内部变量的李群插值和变分恢复
  • DOI:
    10.1007/s00466-013-0876-1
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    A. Mota;WaiChing Sun;J. Ostien;J. W. Foulk;K. Long
  • 通讯作者:
    K. Long
Circumventing mesh bias by r- and h-adaptive techniques for variational eigenfracture
通过 r 和 h 自适应技术规避变分特征断裂的网格偏差
  • DOI:
    10.1007/s10704-019-00349-x
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    A. Qinami;E. Bryant;WaiChing Sun;M. Kaliske
  • 通讯作者:
    M. Kaliske

WaiChing Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WaiChing Sun', 18)}}的其他基金

CAREER: Computational Failure Mechanics Across Multiple Scales with Deep Reinforcement Learning
职业:具有深度强化学习的跨多个尺度的计算故障机制
  • 批准号:
    1846875
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
  • 批准号:
    1940203
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
13th World Congress in Computational Mechanics; New York, New York; July 22-27, 2018
第十三届世界计算力学大会;
  • 批准号:
    1745832
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
新型Field-SEA多尺度溶剂模型的开发与应用研究
  • 批准号:
    21506066
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Field emission scanning electron microscope
场发射扫描电子显微镜
  • 批准号:
    532701230
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Major Research Instrumentation
Numerical simulations of lattice field theory
晶格场论的数值模拟
  • 批准号:
    2902259
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Billiard Field Theory
台球场论
  • 批准号:
    EP/Y023005/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
  • 批准号:
    EP/Z000688/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
  • 批准号:
    EP/Y002474/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
REU Site: Field and laboratory studies of coastal marine processes at the Shannon Point Marine Center
REU 站点:香农角海洋中心沿海海洋过程的现场和实验室研究
  • 批准号:
    2349136
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Conference: Arithmetic quantum field theory
会议:算术量子场论
  • 批准号:
    2400553
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了