GOALI/Collaborative Research: Manufacturing of Carbon Nanotube Contacts for High-Performance Microelectromechanical Switches

GOALI/合作研究:用于高性能微机电开关的碳纳米管触点的制造

基本信息

项目摘要

In applications ranging from switches to electronic packaging assemblies, there is a critical need for electrical contacts with very low resistance. Typical metal contacts have rough surfaces that limit the size of the contact area and thus cause high electrical contact resistance. While larger forces can be applied to increase the contact area, this often results in failure of the contact and thus the device. Repeated cycling of the contact, such as in microelectromechanical switches, accelerates the failure. The poor performance of existing metal-to-metal contacts limits the design and performance of a number of electronic devices. This Grant Opportunity for Academic Liaison with Industry (GOALI) Program project will investigate the manufacturing, performance and integration of carbon nanotube (CNT) contacts that aim to overcome the limitations of current metal-to-metal contacts. This collaborative project will involve expertise in controlled carbon nanotube growth, microdevice fabrication, and small-scale mechanical characterization. It will also involve collaboration with industry to ensure the solutions developed are scalable and commercially relevant. This work will have broad technical impact because improved electrical contacts will enable high reliability microscale switches that can improve the performance and reduce the power consumption of a range of electronic devices, such as mobile phones, and low-power wearable devices. The project will involve training of students in nanomanufacturing and materials engineering as well as the education of K-12 students and the public through demonstrations that illustrate basic principles of nanomaterials and nanomanufacturing at museums and outreach events. This project will investigate the manufacturing, integration, and characterization of a new class of electrical contact materials based on vertically aligned CNTs. These nanostructured materials will have high electrical conductivity, high elastic recoverability, and low elastic modulus and thus allow surface roughness to be accommodated elastically in order to achieve high real contact area and very low electrical resistance. Vertically aligned CNTs ('forests') will be grown on micro-patterned conductive layers by thermal chemical vapor deposition (CVD), and then optionally coated by secondary materials to enhance their mechanical and electrical properties. The properties of these contact materials will be characterized using nanoindentation and electrical measurements. The techniques used to manufacture the contact materials allow the properties of the contacts to be tuned over several orders of magnitude so the materials can be engineered for specific applications by controlling process parameters. The project will generate an understanding of how to robustly and precisely control the properties of CNT-based contacts by our integrated nanomanufacturing approach, leading to strategies for manufacturing contact materials with high uniformity and yield. This project is primarily motivated by the need for new materials for switches based on microelectromechanical systems (MEMS) technology, and novel strategies for the integration of CNT contact materials into silicon MEMS, based on low temperature growth processes, will be investigated.
在从开关到电子封装组件的应用中,迫切需要具有极低电阻的电触点。典型的金属触点具有粗糙的表面,这限制了接触面积的大小,从而导致高的接触电阻。虽然可以施加更大的力来增加接触面积,但这通常会导致接触失败,从而导致设备故障。触点的重复循环,例如在微机电开关中,加速了故障。现有金属对金属触点的不良性能限制了许多电子设备的设计和性能。这项学术与工业联络(GOALI)计划项目将研究碳纳米管(CNT)触点的制造、性能和集成,旨在克服当前金属对金属触点的局限性。该合作项目将涉及控制碳纳米管生长、微器件制造和小规模机械表征方面的专业知识。它还将涉及与行业合作,以确保开发的解决方案具有可扩展性和商业相关性。这项工作将产生广泛的技术影响,因为改进的电触点将使高可靠性的微型开关成为可能,从而提高性能并降低一系列电子设备(如移动电话和低功耗可穿戴设备)的功耗。该项目将包括对学生进行纳米制造和材料工程方面的培训,以及通过在博物馆和外展活动中展示纳米材料和纳米制造的基本原理,对K-12学生和公众进行教育。该项目将研究基于垂直排列碳纳米管的新型电接触材料的制造、集成和表征。这些纳米结构材料将具有高导电性、高弹性可恢复性和低弹性模量,因此可以弹性地调节表面粗糙度,从而实现高实际接触面积和非常低的电阻。垂直排列的碳纳米管(“森林”)将通过热化学气相沉积(CVD)在微图案导电层上生长,然后选择性地涂上二次材料以增强其机械和电气性能。这些接触材料的性质将使用纳米压痕和电测量来表征。用于制造触点材料的技术允许在几个数量级上调整触点的特性,因此通过控制工艺参数可以设计用于特定应用的材料。该项目将通过我们的集成纳米制造方法来了解如何稳健和精确地控制基于碳纳米管的触点的特性,从而导致制造高均匀性和成品率的触点材料的策略。该项目的主要动机是对基于微机电系统(MEMS)技术的开关新材料的需求,以及基于低温生长工艺将碳纳米管接触材料集成到硅微机电系统中的新策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anastasios John Hart其他文献

In-situ monitoring of Material Extrusion processes via thermal videoimaging with application to Big Area Additive Manufacturing (BAAM)
  • DOI:
    10.1016/j.addma.2022.102995
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Fabio Caltanissetta;Gregory Dreifus;Anastasios John Hart;Bianca Maria Colosimo
  • 通讯作者:
    Bianca Maria Colosimo

Anastasios John Hart的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anastasios John Hart', 18)}}的其他基金

Collaborative Research: Interfacial Photopolymerization (IPP): A Method For High-Resolution Digital Printing of Thermoplastics
合作研究:界面光聚合(IPP):一种热塑性塑料高分辨率数字印刷方法
  • 批准号:
    2114343
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Manufacturing USA: High-Resolution Flexography for Printed Electronics Using Nanoporous Carbon Nanotube Stamps
美国制造:使用纳米多孔碳纳米管印章进行印刷电子产品的高分辨率柔印
  • 批准号:
    1826216
  • 财政年份:
    2018
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: High-Speed Continuous Assembly of Nanoparticle Monolayers and Discrete Cluster Arrays
职业:纳米粒子单层和离散簇阵列的高速连续组装
  • 批准号:
    1346638
  • 财政年份:
    2013
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
2012-Directed Differentiation of Stem Cells to Cardiomyocytes Using Optically Act
2012-利用光学作用将干细胞定向分化为心肌细胞
  • 批准号:
    8444918
  • 财政年份:
    2013
  • 资助金额:
    $ 17.5万
  • 项目类别:
2012-Directed Differentiation of Stem Cells to Cardiomyocytes Using Optically Act
2012-利用光学作用将干细胞定向分化为心肌细胞
  • 批准号:
    8703172
  • 财政年份:
    2013
  • 资助金额:
    $ 17.5万
  • 项目类别:
CAREER: High-Speed Continuous Assembly of Nanoparticle Monolayers and Discrete Cluster Arrays
职业:纳米粒子单层和离散簇阵列的高速连续组装
  • 批准号:
    1150585
  • 财政年份:
    2012
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Fabrication of Freeform Hierarchical Micro/Nanostructures by Control of Capillary Interactions with Aligned Carbon Nanotubes
通过控制对齐碳纳米管的毛细管相互作用来制造自由分层微/纳米结构
  • 批准号:
    0927634
  • 财政年份:
    2009
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Limiting Growth Mechanisms and Continuous Manufacturing of Aligned Carbon Nanotube Films
定向碳纳米管薄膜的限制生长机制和连续制造
  • 批准号:
    0800213
  • 财政年份:
    2008
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
  • 批准号:
    2245117
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129825
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129776
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
  • 批准号:
    2219788
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
  • 批准号:
    2302217
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
  • 批准号:
    2147126
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
  • 批准号:
    2147122
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ISS: GOALI: Transients and Instabilities in Flow Boiling and Condensation Under Microgravity
合作研究:ISS:GOALI:微重力下流动沸腾和冷凝的瞬态和不稳定性
  • 批准号:
    2126461
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research/GOALI: Fully Continuous Downstream Processing Enabled by Coupled Precipitation-Filtration Capture Operations
协作研究/GOALI:通过耦合沉淀-过滤捕获操作实现完全连续的下游处理
  • 批准号:
    2032261
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research & GOALI: Direct-Fed Ethanol Metal-Supported Solid Oxide Fuel Cells
合作研究
  • 批准号:
    2050691
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了