Methods for Dynamic Network Identification with Application to the Control of Smart Buildings

动态网络识别方法及其在智能建筑控制中的应用

基本信息

  • 批准号:
    1463316
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

A dynamic network consists of interacting dynamic sub-systems. Such networks occur in many domains: living cells, financial markets, the Internet and the power grid are some examples. Heating, ventilation and air conditioning (HAVC) systems in buildings can also be modeled through dynamic networks since each room's climate depends on that of nearby spaces. Knowledge of such dynamic network models is essential to design and deploy control strategies devoted to the improvement of energy efficiency and occupant comfort. Yet, in practice the structure and dynamics of these networks are either unknown or imprecisely known. For instance, information on the thermal interaction among rooms is difficult to obtain from laws of physics due to the complexity of the physical processes involved. The goal of this project is to formulate algorithms for the identification of dynamic sparse network models from measured data. The research results will support the study of advanced controls for HVAC systems to reduce their energy use and to provide demand-side flexibility to the power grid. Since buildings consume 75% of the nation's electricity, improvement of energy efficiency through smart building control systems will contribute to the sustainability of the nation's energy system. Although 'dynamic system identification' is a well-developed field, the field of identification of dynamic networks is not at all well-developed. Traditional dynamic system identification techniques cannot exploit the inherent sparseness of the network identification problem, while traditional machine learning techniques are mostly applicable to only static networks. In this project we combine ideas from traditional dynamic system identification, L1 optimization for sparse vector recovery (from compressed sensing), and graphical modeling from machine learning to address the challenges in dynamic network identification. If successful, the research will (1) provide fundamental contribution to the nascent field of dynamic network identification through new algorithms, and (2) enable speedy deployment of 'smart building' technologies in commercial buildings. In addition, the project will support a number of educational innovations for attracting students from under-represented groups to engineering and generating excitement about engineering.
动态网络由相互作用的动态子系统组成。这种网络出现在许多领域:活细胞、金融市场、互联网和电网就是一些例子。建筑物中的供暖、通风和空调(HAVC)系统也可以通过动态网络进行建模,因为每个房间的气候都取决于附近空间的气候。这种动态网络模型的知识是必不可少的设计和部署控制策略,致力于提高能源效率和乘员舒适度。然而,在实践中,这些网络的结构和动态要么是未知的,要么是不准确的。例如,由于所涉及的物理过程的复杂性,很难从物理定律中获得关于房间之间的热相互作用的信息。这个项目的目标是制定算法的动态稀疏网络模型的测量数据的识别。研究结果将支持HVAC系统先进控制的研究,以减少其能源使用,并为电网提供需求侧的灵活性。由于建筑物消耗了全国75%的电力,通过智能建筑控制系统提高能源效率将有助于国家能源系统的可持续性。虽然“动态系统识别”是一个发展良好的领域,但动态网络的识别领域还没有完全发展。传统的动态系统辨识技术无法利用网络辨识问题固有的稀疏性,而传统的机器学习技术大多只适用于静态网络。在这个项目中,我们结合联合收割机的想法,从传统的动态系统识别,L1优化稀疏向量恢复(从压缩感知),和图形化建模的机器学习,以解决动态网络识别的挑战。如果成功,该研究将(1)通过新算法为新兴的动态网络识别领域做出根本性贡献,(2)在商业建筑中快速部署“智能建筑”技术。此外,该项目将支持一些教育创新,以吸引来自代表性不足群体的学生从事工程学,并激发对工程学的兴趣。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Adaptive Model Predictive Control Scheme for Energy-Efficient Control of Building HVAC Systems
建筑暖通空调系统节能控制的自适应模型预测控制方案
An autonomous MPC scheme for energy-efficient control of building HVAC systems
用于建筑 HVAC 系统节能控制的自主 MPC 方案
  • DOI:
    10.23919/acc45564.2020.9147753
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zeng, Tingting;Barooah, Prabir
  • 通讯作者:
    Barooah, Prabir
Simultaneous identification of linear building dynamic model and disturbance using sparsity-promoting optimization
使用稀疏性促进优化同时识别线性建筑动力模型和扰动
  • DOI:
    10.1016/j.automatica.2021.109631
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Zeng, Tingting;Brooks, Jonathan;Barooah, Prabir
  • 通讯作者:
    Barooah, Prabir
Simultaneous identification of dynamic model and occupant-induced disturbance for commercial buildings
  • DOI:
    10.1016/j.buildenv.2017.10.020
  • 发表时间:
    2018-01-15
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Coffman, Austin R.;Barooah, Prabir
  • 通讯作者:
    Barooah, Prabir
Identification of Network Dynamics and Disturbance for a Multizone Building
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prabir Barooah其他文献

Prabir Barooah的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prabir Barooah', 18)}}的其他基金

CPS: Synergy: Distributed coordination of smart devices to mitigate intermittency of renewable generation for a smarter and sustainable power grid
CPS:协同:智能设备的分布式协调,以减轻可再生能源发电的间歇性,打造更智能、可持续的电网
  • 批准号:
    1646229
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Distributed estimation and control for energy efficient buildings
职业:节能建筑的分布式估计和控制
  • 批准号:
    0955023
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: GOALI: Methods for Network-Enabled Embedded Monitoring and Control for High-Performance Buildings
CPS:中:协作研究:GOALI:高性能建筑的网络嵌入式监控方法
  • 批准号:
    0931885
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

Dynamic Credit Rating with Feedback Effects
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

CAREER: A Multi-layer Dynamic Network Control for Agile, Optimized, and Sustainable Supply Chains
事业:敏捷、优化和可持续供应链的多层动态网络控制
  • 批准号:
    2238269
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Evaluating uncertainty avoidance behaviora for dynamic network design under tremendous disaster
评估巨大灾难下动态网络设计的不确定性避免行为
  • 批准号:
    23H01527
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
DYNCOAST: Dynamic Network Planning and Optimisation for Next Generation Coastal and Vessel Management
DYNCOAST:下一代沿海和船舶管理的动态网络规划和优化
  • 批准号:
    10079103
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
Use of dynamic network models to explore the role of social media use in HIV transmission and health promotion among gay men and other MSM
使用动态网络模型探讨社交媒体的使用在男同性恋者和其他 MSM 中艾滋病毒传播和健康促进中的作用
  • 批准号:
    MR/S020462/2
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
Dynamic functional network connectivity and neuroplasticity in post-stroke aphasia
中风后失语症的动态功能网络连接和神经可塑性
  • 批准号:
    10826465
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Dynamic Network Analysis of Social Cognition and Suicide in Psychosis
精神病社会认知与自杀的动态网络分析
  • 批准号:
    10677212
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Containerization Based Network Slice Mobility with Dynamic Capabilities
基于容器化的网络切片移动性和动态能力
  • 批准号:
    23K16869
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Optical circuit switched time sensitive network architecture for high-speed passive optical networks and next generation ultra-dynamic and reconfigurable central office environments
用于高速无源光网络和下一代超动态和可重构中心局环境的光电路交换时间敏感网络架构
  • 批准号:
    10047215
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    EU-Funded
The dynamic balance between neuronal volume and chloride handling in network excitability after traumatic brain injury
创伤性脑损伤后网络兴奋性中神经元体积和氯处理之间的动态平衡
  • 批准号:
    10661080
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
CRCNS Research Proposal: Modeling Human Brain Development as a Dynamic Multi-Scale Network Optimization Process
CRCNS 研究提案:将人脑发育建模为动态多尺度网络优化过程
  • 批准号:
    2207440
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了