Groups, Manifolds, and Complexes
群、流形和复合体
基本信息
- 批准号:1700165
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A question of considerable importance in science concerns the stability of solutions to equations that model systems of interest. A general form of the question asks: Given an approximate solution, is there necessarily also an exact solution that is close to the approximate solution? This question has been studied intensively in many directions, with answers depending on the specific system and the exact meaning of "approximate solution" and "close." The current research project develops such a theory for equations in sets of permutations. This case is of special interest for two reasons: Firstly, it can be interpreted as a "local testability" question, a subject of great interest in computer science. Namely, it is part of a series of problems of the following flavor: a very large string of letters is given, and one wants to check its properties by knowing only a few of the letters. A second reason is that it turns out that the question under study in this project is intimately related to some deep concepts in abstract algebra. It is thus a project of a very interdisciplinary nature, involving a blend of several areas of mathematics and computer science.In more detail, the project deals with property testing within group theory. Property testing is a direction of research in computer science that looks for methods to check a property of a given object, say a long vector of 0's and 1's, by looking only at a small number of random bits of it. The following question is of this type. Given a word w(X,Y) built from elements X and Y of the symmetric group of permutations on a set T, assume that for two permutations A and B, w(A,B) leaves unchanged some randomly selected elements of T. Can it be inferred that w(A,B) is the identity, or at least, that A and B are close to a pair of permutations A' and B' for which w(A',B') is the identity? It turns out that the answer to this question depends only on the structure of the (usually infinite) group whose presentation by generators and relations is given by these words. This suggests a concept of testability (or stability) in group theory. The main objective of this project is to develop a set of tools to determine which groups are testable and which are not. The project will also explore connections with amenability, Kazhdan's Property (T), and sofic groups.
在科学中,一个相当重要的问题是关于模拟感兴趣系统的方程的解的稳定性。问题的一般形式是:给定一个近似解,是否也必然存在一个接近近似解的精确解?这个问题已在多个方向进行了深入研究,答案取决于具体系统以及“近似解”和“接近”的确切含义。“目前的研究项目开发了这样一个理论的方程组的排列。这种情况是特别感兴趣的两个原因:首先,它可以被解释为一个“本地可测试性”的问题,在计算机科学的极大兴趣的主题。也就是说,它是一系列问题的一部分,这些问题具有以下特点:给定了一个非常大的字母串,人们想通过只知道其中几个字母来检查它的性质。第二个原因是,这个项目所研究的问题与抽象代数中的一些深层概念密切相关。因此,这是一个非常跨学科的项目,涉及数学和计算机科学的几个领域的混合。更详细地说,该项目涉及群论中的属性测试。属性测试是计算机科学中的一个研究方向,它寻找方法来检查给定对象的属性,比如一个由0和1组成的长向量,只看它的一小部分随机位。下面的问题就是这种类型。给定一个由集合T上的对称置换群的元素X和Y构成的字w(X,Y),假设对于两个置换A和B,w(A,B)保持T的一些随机选择的元素不变。是否可以推断w(A,B)是单位元,或者至少A和B接近于一对排列A'和B',其中w(A ',B')是单位元?事实证明,这个问题的答案只取决于(通常是无限的)群的结构,群的生成元和关系的表示由这些词给出。这暗示了群论中的可测性(或稳定性)概念。该项目的主要目标是开发一套工具,以确定哪些组是可测试的,哪些是不可测试的。该项目还将探索与舒适性,Kazhdan的财产(T)和sofic集团的联系。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On groups and simplicial complexes
关于群和单纯复形
- DOI:10.1016/j.ejc.2018.01.009
- 发表时间:2018
- 期刊:
- 影响因子:1
- 作者:Lubotzky, Alexander;Luria, Zur;Rosenthal, Ron
- 通讯作者:Rosenthal, Ron
Stability and invariant random subgroups
稳定性和不变随机子组
- DOI:10.1215/00127094-2019-0024
- 发表时间:2019
- 期刊:
- 影响因子:2.5
- 作者:Becker, Oren;Lubotzky, Alexander;Thom, Andreas
- 通讯作者:Thom, Andreas
STABILITY, COHOMOLOGY VANISHING, AND NONAPPROXIMABLE GROUPS
稳定性、上同调消失和不可近似群
- DOI:10.1017/fms.2020.5
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:DE CHIFFRE, MARCUS;GLEBSKY, LEV;LUBOTZKY, ALEXANDER;THOM, ANDREAS
- 通讯作者:THOM, ANDREAS
Random Steiner systems and bounded degree coboundary expanders of every dimension
随机斯坦纳系统和每个维度的有界度共界扩展器
- DOI:10.1007/s00454-018-9991-2
- 发表时间:2019
- 期刊:
- 影响因子:0.8
- 作者:Lubotzky, Alexander;Luria, Zur;Rosenthal, Ron
- 通讯作者:Rosenthal, Ron
Random walks on Ramanujan complexes and digraphs
拉马努金复形和有向图上的随机游走
- DOI:10.4171/jems/990
- 发表时间:2020
- 期刊:
- 影响因子:2.6
- 作者:Lubetzky, Eyal;Lubotzky, Alexander;Parzanchevski, Ori
- 通讯作者:Parzanchevski, Ori
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Lubotzky其他文献
Embedding covers and the theory of frobenius fields
- DOI:
10.1007/bf02771720 - 发表时间:
1982-09-01 - 期刊:
- 影响因子:0.800
- 作者:
Dan Haran;Alexander Lubotzky - 通讯作者:
Alexander Lubotzky
On some Λ-analytic pro-p groups
- DOI:
10.1007/bf02758646 - 发表时间:
1994-02-01 - 期刊:
- 影响因子:0.800
- 作者:
Alexander Lubotzky;Aner Shalev - 通讯作者:
Aner Shalev
Stability of homomorphisms, coverings and cocycles II: Examples, applications and open problems
同态、覆盖和上圈的稳定性 II:例子、应用和开放问题
- DOI:
10.1016/j.aim.2025.110117 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:1.500
- 作者:
Michael Chapman;Alexander Lubotzky - 通讯作者:
Alexander Lubotzky
Discrete groups of slow subgroup growth
- DOI:
10.1007/bf02937313 - 发表时间:
1996-06-01 - 期刊:
- 影响因子:0.800
- 作者:
Alexander Lubotzky;László Pyber;Aner Shalev - 通讯作者:
Aner Shalev
Stability of Homomorphisms, Coverings and Cocycles I: Equivalence
同态、覆盖和余循环的稳定性 I:等价
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Michael Chapman;Alexander Lubotzky - 通讯作者:
Alexander Lubotzky
Alexander Lubotzky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Lubotzky', 18)}}的其他基金
FRG: Collaborative Research: Super Approximation and Thin Groups with Applications to Geometry, Groups, and Number Theory
FRG:协作研究:超逼近和薄群及其在几何、群和数论中的应用
- 批准号:
1463897 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
High Dimensional Expanders and Ramanujan Complexes
高维扩展器和拉马努金复合体
- 批准号:
1404257 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Lie Groups: Dynamics, Rigidity, Arithmetic
李群:动力学、刚性、算术
- 批准号:
0533495 - 财政年份:2006
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Discrete Groups, Expanding Graphs and Pro-P Methods
离散群、展开图和 Pro-P 方法
- 批准号:
0101174 - 财政年份:2001
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似海外基金
Group actions on manifolds and complexes
流形和复形上的群作用
- 批准号:
RGPIN-2016-05111 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Group actions on manifolds and complexes
流形和复形上的群作用
- 批准号:
RGPIN-2016-05111 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Group actions on manifolds and complexes
流形和复形上的群作用
- 批准号:
RGPIN-2016-05111 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Group actions on manifolds and complexes
流形和复形上的群作用
- 批准号:
RGPIN-2016-05111 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Group actions on manifolds and complexes
流形和复形上的群作用
- 批准号:
RGPIN-2016-05111 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Group actions on manifolds and complexes
流形和复形上的群作用
- 批准号:
RGPIN-2016-05111 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Research on 3-manifolds by using infinite complexes associated with surfaces
利用与曲面相关的无限复形研究3-流形
- 批准号:
15K04869 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric Group Theory with an Emphasis on Cube Complexes and Three-Manifolds
强调立方复形和三流形的几何群论
- 批准号:
464041-2014 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
U.S.-Germany Cooperative Research: Geometric, Metric and Homotopical Aspects of Low Diminensional Cell Complexes and Manifolds
美德合作研究:低维细胞复合体和流形的几何、公制和同伦方面
- 批准号:
9603282 - 财政年份:1997
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Mathematical Science: Analytical and Topological Invariants of Odd-Dimensional Manifolds and Cell-Complexes
数学科学:奇维流形和细胞复合体的分析和拓扑不变量
- 批准号:
9401516 - 财政年份:1995
- 资助金额:
$ 15万 - 项目类别:
Standard Grant