Sieve Methods in Group Theory
群论中的筛选方法
基本信息
- 批准号:1066427
- 负责人:
- 金额:$ 20.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The last few years showed a dramatic progress on expander graphs and property 'tau'; these developments led to the 'affine sieve method' showing that for many groups acting on the set of integer lattice points in n-dimensional Euclidean space, each orbit has infinitely many vectors whose entries are all almost primes, i.e., every entry is a product of a bounded number of primes. This is a non-commutative version of classical number theoretic results. We plan to take this direction some steps further and to apply similar methods for developing 'group sieve method' for the study of pure group theoretical problems. This method seems to be suitable for solving problems which are out of reach by the classical group theoretic methods. Applying this method to various groups of important in geometry and topology- e.g., the mapping class group, it is expected to give also some geometric applications. So all together generalized number theoretic methods are expected to have some significant geometric applications.Groups acting on certain mathematical objects as symmetry is in the heart of mathematical research. Most mathematical and physical questions are modeled as group acting on a certain set. This proposal deals with groups on certain geometric and combinatorial objects and is to study properties of these actions. The topics discussed in this proposal involve connections between several areas of research and illustrate the unity of mathematics and its connection with computer science.
最近几年在扩展图和性质“τ”方面取得了巨大的进展;这些发展导致了“仿射筛法”,表明对于作用在n维欧几里得空间中的整数格点集合上的许多群,每个轨道都有无穷多个向量,其条目都是几乎素数,即,每一个条目都是有限个素数的乘积。这是经典数论结果的非交换版本。我们计划采取这一方向的一些步骤,并应用类似的方法,为发展“组筛方法”的研究纯组理论问题。这种方法似乎适用于解决经典群论方法无法解决的问题。将这种方法应用于几何和拓扑学中的各种重要群体-例如,映射类群,它也被期望给出一些几何应用。因此,所有的广义数论方法都有望在几何学中有一些重要的应用。群作为对称性作用于某些数学对象是数学研究的核心。大多数数学和物理问题都被建模为在特定集合上的群体作用。这个建议涉及某些几何和组合对象的群体,并研究这些行动的性质。本提案中讨论的主题涉及几个研究领域之间的联系,并说明了数学的统一性及其与计算机科学的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Lubotzky其他文献
Embedding covers and the theory of frobenius fields
- DOI:
10.1007/bf02771720 - 发表时间:
1982-09-01 - 期刊:
- 影响因子:0.800
- 作者:
Dan Haran;Alexander Lubotzky - 通讯作者:
Alexander Lubotzky
On some Λ-analytic pro-p groups
- DOI:
10.1007/bf02758646 - 发表时间:
1994-02-01 - 期刊:
- 影响因子:0.800
- 作者:
Alexander Lubotzky;Aner Shalev - 通讯作者:
Aner Shalev
Stability of homomorphisms, coverings and cocycles II: Examples, applications and open problems
同态、覆盖和上圈的稳定性 II:例子、应用和开放问题
- DOI:
10.1016/j.aim.2025.110117 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:1.500
- 作者:
Michael Chapman;Alexander Lubotzky - 通讯作者:
Alexander Lubotzky
Discrete groups of slow subgroup growth
- DOI:
10.1007/bf02937313 - 发表时间:
1996-06-01 - 期刊:
- 影响因子:0.800
- 作者:
Alexander Lubotzky;László Pyber;Aner Shalev - 通讯作者:
Aner Shalev
Stability of Homomorphisms, Coverings and Cocycles I: Equivalence
同态、覆盖和余循环的稳定性 I:等价
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Michael Chapman;Alexander Lubotzky - 通讯作者:
Alexander Lubotzky
Alexander Lubotzky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Lubotzky', 18)}}的其他基金
FRG: Collaborative Research: Super Approximation and Thin Groups with Applications to Geometry, Groups, and Number Theory
FRG:协作研究:超逼近和薄群及其在几何、群和数论中的应用
- 批准号:
1463897 - 财政年份:2015
- 资助金额:
$ 20.64万 - 项目类别:
Standard Grant
High Dimensional Expanders and Ramanujan Complexes
高维扩展器和拉马努金复合体
- 批准号:
1404257 - 财政年份:2014
- 资助金额:
$ 20.64万 - 项目类别:
Continuing Grant
Lie Groups: Dynamics, Rigidity, Arithmetic
李群:动力学、刚性、算术
- 批准号:
0533495 - 财政年份:2006
- 资助金额:
$ 20.64万 - 项目类别:
Standard Grant
Discrete Groups, Expanding Graphs and Pro-P Methods
离散群、展开图和 Pro-P 方法
- 批准号:
0101174 - 财政年份:2001
- 资助金额:
$ 20.64万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a methods working group to advance the science of knowledge mobilization for Canada's culturally and linguistically diverse population
建立一个方法工作组,以促进加拿大文化和语言多样化人口的知识动员科学
- 批准号:
468184 - 财政年份:2022
- 资助金额:
$ 20.64万 - 项目类别:
Miscellaneous Programs
Catalytic methods for the synthesis of main group molecules
主族分子合成的催化方法
- 批准号:
RGPIN-2017-04996 - 财政年份:2022
- 资助金额:
$ 20.64万 - 项目类别:
Discovery Grants Program - Individual
Development of novel methods for utilization acetal group and their application to synthesis of polycyclic compounds
缩醛基利用新方法的开发及其在多环化合物合成中的应用
- 批准号:
21K15229 - 财政年份:2021
- 资助金额:
$ 20.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Modern causal methods to estimate the impact of Individual and Group Health Policies using routinely collected data
使用常规收集的数据评估个人和团体健康政策影响的现代因果方法
- 批准号:
2585221 - 财政年份:2021
- 资助金额:
$ 20.64万 - 项目类别:
Studentship
Catalytic methods for the synthesis of main group molecules
主族分子合成的催化方法
- 批准号:
RGPIN-2017-04996 - 财政年份:2021
- 资助金额:
$ 20.64万 - 项目类别:
Discovery Grants Program - Individual
Understanding Optimal Size for Group Work in Face to Face and Virtual Research Methods Courses for Undergraduate Psychology Majors
了解本科心理学专业面对面和虚拟研究方法课程中小组工作的最佳规模
- 批准号:
2120658 - 财政年份:2021
- 资助金额:
$ 20.64万 - 项目类别:
Standard Grant
Innovating group-dialogue methods for cultivating engineers' citizenship-mind in the age of trans-science
创新小组对话方式培养跨科学时代工程师公民意识
- 批准号:
20K14125 - 财政年份:2020
- 资助金额:
$ 20.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Catalytic methods for the synthesis of main group molecules
主族分子合成的催化方法
- 批准号:
RGPIN-2017-04996 - 财政年份:2020
- 资助金额:
$ 20.64万 - 项目类别:
Discovery Grants Program - Individual
The Reception of Judo as a Recreational Sports Activity in Germany: With a focus on target group appropriate teaching methods
德国柔道作为休闲体育活动的接受情况:注重目标群体适当的教学方法
- 批准号:
20K19612 - 财政年份:2020
- 资助金额:
$ 20.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Enhanced methods of group classification of differential equations
微分方程群分类的增强方法
- 批准号:
535258-2019 - 财政年份:2020
- 资助金额:
$ 20.64万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral