CSEDI Collaborative Research: A Multidisciplinary Approach to Investigate the Origin of Anisotropy at the Base of the Mantle

CSEDI 合作研究:研究地幔底部各向异性起源的多学科方法

基本信息

  • 批准号:
    1464014
  • 负责人:
  • 金额:
    $ 41.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

The lowermost part of the earth's mantle, referred to as the D" region, is a dynamic region that is both a thermal and chemical boundary layer between the solid, silicate mantle and the fluid, mostly iron outer core. A better understanding of the deformation processes that occur in this region would provide important constraints on the current dynamics of the entire mantle, the processes of heat transfer from the core to the mantle, the thermal evolution of our planet, and the existence and extent of geochemical heterogeneity. To study deformation processes in the deepest mantle, the investigators combine expertise from several disciplines: seismology, mineral physics and geodynamical modeling of mantle convection, linked together around a common object of study: seismic anisotropy, i.e. the difference in propagation speeds of seismic waves depending on the orientation of the path travelled, a proxy for macroscopic deformation. The latter's characteristics reflect mineral properties as well as flow strength and geometry. In this project, the team will apply the multi-disciplinary tools developed in a previous joint study funded by the CSEDI program of NSF to further characterize the possible causes of seismic anisotropy in the earth's deep mantle. They will begin with 3D fluid dynamical modeling of mantle convection, in which they will model the deformation of descending tectonic plates as they come in contact with Earth's core-mantle boundary. It is unclear how strong these plates are, and their strength will control how they deform. Strong plates will buckle and bend, whereas weak plates will deform is a more ductile fashion. The team will examine numerous scenarios, each assuming a different strength for descending plates. They will also examine scenarios in which descending plates interact with hypothesized compositional heterogeneity in the deep mantle. Deformation data from the dynamical calculations will be used as input for mineral physics calculations to predict the alignment of minerals which will control the nature of seismic anisotropy. By comparing predicted seismic anisotropy from various models to that observed by seismic studies, they will constrain deformation characteristics of descending plates and compositional characteristics of the D" zone. This will provide important information on how sinking plates drive larger-scale mantle convection.The presence of anisotropy in the D" region of the earth's mantle is now well established, although its cause remains unclear. Much progress was recently achieved in mineral physics, to characterize elastic and deformation properties of lowermost mantle minerals including the post-perovskite (pPv) phase, as well as in geodynamics, tracking strain evolution in mantle convection modeling. There are now precise ways to compute synthetic seismograms in a 3D anisotropic earth down to body wave frequencies. This study will advance our understanding of the structure and dynamics of an important boundary layer region in the earth. In previous collaborative work funded by CSEDI, the investigators developed a multi-disciplinary approach combining elements from geodynamic modeling, mineral physics and material science experiments and computations, to perform forward modeling of crystal preferred orientation (CPO) anisotropy in a 3D spherical earth, in the deep mantle part of a subducted slab, under different starting assumptions, and compared them with seismic observations. The ultimate goal is to gain better understanding of the origin of seismic anisotropy in D", and determine which microscopic and macroscopic processes may or may not be at play. So far, they investigated the case of a 3D geodynamical model under rather simple rheological assumptions. Now, they will explore varying rheologies producing slabs of variable strength, including the effect of the pPv phase-change, and how slabs will deform in the presence of hypothetical thermochemical piles. For each of these different calculations, they will provide the deformation information to serve as input for the mineralogical texture development within a polycrystalline mineral aggregate. While the team will still focus on three phases, perovskite, pPv and ferropericlase, they will also explore the effect of a variety of Fe and Al substitution mechanisms, both theoretically and experimentally. The predicted seismic anisotropy from these models will be confronted with seismological observations of radial and azimuthal anisotropy both acquired during this project and from the literature.
地幔最下面的部分,称为D“区,是一个动态区域,它是固体硅酸盐地幔和流体(主要是铁的外核)之间的热和化学边界层。更好地了解该区域发生的变形过程将对整个地幔当前的动力学、从地核到地幔的热传递过程、地球的热演化以及地球化学不均一性的存在和程度提供重要的制约。为了研究地幔最深处的变形过程,研究人员结合了地震学、矿物物理学和地幔对流地球动力学模型等几个学科的专门知识,围绕一个共同的研究对象--地震各向异性--联系在一起,即地震波的传播速度随传播路径方向的不同而变化,这是宏观变形的指标。后者的特征反映了矿物性质以及流动强度和几何形状。在这个项目中,该团队将应用之前由美国国家科学基金会CSEDI计划资助的联合研究中开发的多学科工具,以进一步表征地球深部地幔地震各向异性的可能原因。他们将从地幔对流的3D流体动力学模拟开始,在其中他们将模拟下降的构造板块与地球核幔边界接触时的变形。目前尚不清楚这些板块的强度有多大,它们的强度将控制它们的变形方式。坚固的板材会弯曲弯曲,而薄弱的板材会变形,这是一种更具延展性的方式。该团队将研究许多种情况,每种情况对下降的板块假设不同的强度。他们还将研究下降板块与假设的地幔深部成分不均质性相互作用的情景。来自动力学计算的变形数据将被用作矿物物理计算的输入,以预测矿物的排列,这将控制地震各向异性的性质。通过将各种模型预测的地震各向异性与地震研究观测到的地震各向异性进行比较,它们将约束下降板块的变形特征和D“带的成分特征。这将为下沉板块如何驱动更大范围的地幔对流提供重要信息。目前,地幔D“区存在各向异性已得到很好的证实,尽管其原因尚不清楚。最近在矿物物理、表征包括后钙钛矿(PPV)相在内的下地幔矿物的弹性和变形性质以及地球动力学方面取得了很大进展,跟踪了地幔对流模拟中的应变演化。现在有了精确的方法来计算3D各向异性地球中的合成地震图,精确到体波频率。这项研究将促进我们对地球上一个重要的边界层区域的结构和动力学的理解。在CSEDI以前资助的合作工作中,研究人员开发了一种多学科方法,结合地球动力学建模、矿物物理和材料科学实验和计算的元素,在不同的初始假设下,对俯冲板块深部地幔部分的3D球形地球中的晶体择优取向各向异性进行正演模拟,并将其与地震观测结果进行比较。最终目标是更好地了解D“地震各向异性的起源,并确定哪些微观和宏观过程可能在起作用,哪些可能不起作用。到目前为止,他们在相当简单的流变学假设下研究了3D地球动力学模型的情况。现在,他们将探索产生不同强度的板材的不同流变学,包括PPV相变的影响,以及在假设的热化学堆积存在的情况下板材将如何变形。对于这些不同的计算,它们将提供变形信息,作为多晶矿物集合体内矿物结构发展的输入。虽然该团队仍将专注于钙钛矿、PPV和铁方镁石这三个相,但他们也将从理论和实验上探索各种铁和铝替代机制的影响。由这些模型预测的地震各向异性将与在本项目期间和从文献中获得的径向和方位各向异性的地震学观测结果相对抗。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring microstructures in lower mantle mineral assemblages with synchrotron x-rays.
  • DOI:
    10.1126/sciadv.abd3614
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Chandler B;Bernier J;Diamond M;Kunz M;Wenk HR
  • 通讯作者:
    Wenk HR
Deformation of binary and boron-doped Ni 3 Al alloys at high pressures studied with synchrotron x-ray diffraction
用同步加速器 X 射线衍射研究二元和硼掺杂 Ni 3 铝合金在高压下的变形
  • DOI:
    10.1063/5.0037012
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Raju, S. V.;Vasin, R. N.;Godwal, B. K.;Jeanloz, R.;Wenk, H.-R.;Saxena, S. K.
  • 通讯作者:
    Saxena, S. K.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Barbara Romanowicz其他文献

The buoyancy of Earth's deep mantle
地球深部地幔的浮力
  • DOI:
    10.1038/551308a
  • 发表时间:
    2017-11-16
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Barbara Romanowicz
  • 通讯作者:
    Barbara Romanowicz
Geodynamics / Géodynamique 3 D structure of the Earth ’ s lower mantle
地球动力学 / Géodynamique 地球下地幔的 3D 结构
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barbara Romanowicz
  • 通讯作者:
    Barbara Romanowicz
Efficient hybrid numerical modeling of the seismic wavefield in the presence of solid-fluid boundaries
存在固液边界时地震波场的高效混合数值模拟
  • DOI:
    10.1038/s41467-025-56530-5
  • 发表时间:
    2025-02-18
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Chao Lyu;Barbara Romanowicz;Liang Zhao;Yder Masson
  • 通讯作者:
    Yder Masson
On moment‐length scaling of large strike slip earthquakes and the strength of faults
关于大走滑地震的矩长尺度和断层强度
  • DOI:
    10.1029/2001gl014479
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Barbara Romanowicz;L. Ruff
  • 通讯作者:
    L. Ruff
Mantle plumes and their role in Earth processes
地幔柱及其在地球过程中的作用
  • DOI:
    10.1038/s43017-021-00168-6
  • 发表时间:
    2021-05-25
  • 期刊:
  • 影响因子:
    71.500
  • 作者:
    Anthony A. P. Koppers;Thorsten W. Becker;Matthew G. Jackson;Kevin Konrad;R. Dietmar Müller;Barbara Romanowicz;Bernhard Steinberger;Joanne M. Whittaker
  • 通讯作者:
    Joanne M. Whittaker

Barbara Romanowicz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Barbara Romanowicz', 18)}}的其他基金

CSEDI Collaborative Proposal: a multi-disciplinary investigation of slab deformation and resulting seismic anisotropy from the transition zone to the base of the mantle
CSEDI 合作提案:对板片变形和由此产生的从地幔底部过渡带的地震各向异性进行多学科研究
  • 批准号:
    2054951
  • 财政年份:
    2021
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Understanding the origins of MORB geochemical heterogeneity using constraints from seismic tomography and geodynamic modeling
CSEDI 合作研究:利用地震层析成像和地球动力学建模的约束了解 MORB 地球化学非均质性的起源
  • 批准号:
    1800324
  • 财政年份:
    2018
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
Resolving the influence of mantle heterogeneity on estimates of inner core anisotropy
解决地幔非均质性对内核各向异性估计的影响
  • 批准号:
    1829283
  • 财政年份:
    2018
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
Implementation of "Box Tomography" for high resolution imaging of Target Regions in the Earth's Deep Mantle
实施“盒式断层扫描”,对地球深部地幔目标区域进行高分辨率成像
  • 批准号:
    1758198
  • 财政年份:
    2018
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Continuing Grant
Anisotropic Layering in the North American Upper Mantle Using a Combination of Seismological Approaches
结合地震学方法研究北美上地幔的各向异性分层
  • 批准号:
    1460205
  • 财政年份:
    2015
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterizing sources of infragravity waves and the earth's hum using data from the Cascadia Amphibious Array
合作研究:利用卡斯卡迪亚两栖阵列的数据来表征次重力波和地球嗡嗡声的来源
  • 批准号:
    1538276
  • 财政年份:
    2015
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Developing a Three-Dimensional Seismic Reference Earth Model (REM-3D) in Collaboration with the Community
合作研究:与社区合作开发三维地震参考地球模型 (REM-3D)
  • 批准号:
    1345103
  • 财政年份:
    2014
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
Investigation of the earth's mantle plumbing system at the global scale using an advanced seismic imaging approach.
使用先进的地震成像方法在全球范围内研究地幔管道系统。
  • 批准号:
    1417229
  • 财政年份:
    2014
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Continuing Grant
2013 Interior of the Earth GRC/GRS
2013 地球内部 GRC/GRS
  • 批准号:
    1321488
  • 财政年份:
    2013
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
CSEDI collaborative research: a multidisciplinary approach to investigate the origin of anisotropy at the base of the mantle
CSEDI 合作研究:采用多学科方法研究地幔底部各向异性的起源
  • 批准号:
    1067513
  • 财政年份:
    2011
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2154072
  • 财政年份:
    2022
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2153688
  • 财政年份:
    2022
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2153910
  • 财政年份:
    2022
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
  • 批准号:
    2054884
  • 财政年份:
    2021
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
  • 批准号:
    2054964
  • 财政年份:
    2021
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: Understanding of the effects of large planetesimal collisions on Hadean Earth mantle dynamics
CSEDI合作研究:了解大型星子碰撞对冥古宙地幔动力学的影响
  • 批准号:
    2102571
  • 财政年份:
    2021
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Understanding of the effects of large planetesimal collisions on Hadean Earth mantle dynamics
CSEDI合作研究:了解大型星子碰撞对冥古宙地幔动力学的影响
  • 批准号:
    2102777
  • 财政年份:
    2021
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
  • 批准号:
    2054912
  • 财政年份:
    2021
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
  • 批准号:
    2054876
  • 财政年份:
    2021
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
  • 批准号:
    2054993
  • 财政年份:
    2021
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了