Research in Analysis
分析研究
基本信息
- 批准号:1464479
- 负责人:
- 金额:$ 21.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project covers a range of problems central to classical analysis and partial differential equations. The research will focus on three topics: approximation theory, nonlinear nonlocal evolution equations, and the spectral theory of Schrodinger operators. In approximation theory, the research concerns problems related to estimating the size of orthonormal polynomials. Understanding the asymptotics of the orthonormal polynomials has proved to be crucial for the progress in several fields, including mathematical physics and probability. The second main theme of the research is analysis of two-dimensional active scalar equations. These nonlinear and nonlocal evolution equations appear in the fluid dynamics and atmospheric and ocean sciences. The physical processes described by these equations are known to be highly unstable, and this project aims to develop a mathematical explanation for that phenomenon. The third topic of this project is spectral theory of Schrodinger operators. The Schrodinger equation is one of the basic equations in mathematical physics. The project will focus on understanding how the properties of the potential function affect the scattering of waves. In the area of approximation theory, the research investigates the following classical question: what is the size of the polynomial orthonormal on the unit circle (or the real line) with respect to a measure from a given class. Various ways to define the size and various classes of measures will be considered. For example, the project will study a class of weights that have a fixed oscillation around a given constant. The second part of the project will mainly focus on two active scalar equations: the two-dimensional Euler equation of fluid dynamics and the surface quasi-geostrophic equation. Questions of instability will be addressed; in particular, patch dynamics will be studied and the merging mechanism of a centrally symmetric pair will be analyzed. The third topic of this project will address multidimensional scattering. The Schrodinger evolution with rough potential will be considered and the classical questions of the scattering theory will be studied. To carry out the proposed research, methods of harmonic and complex analysis will be used along with techniques from nonlinear analysis and the theory of partial differential equations. Through the training of graduate and undergraduate students the project will have an impact on human resource development.
这个研究项目涵盖了一系列经典分析和偏微分方程式的核心问题。研究将集中在三个主题上:逼近理论、非线性非局域发展方程和薛定谔算子的谱理论。在逼近理论中,研究了与估计正交多项式的大小有关的问题。了解正交化多项式的渐近性对于数学物理和概率等多个领域的发展是至关重要的。研究的第二个主要主题是二维活动标量方程的分析。这些非线性的、非局部的演化方程出现在流体力学、大气和海洋科学中。众所周知,这些方程所描述的物理过程是高度不稳定的,这个项目的目的是为这一现象发展一个数学解释。本项目的第三个主题是薛定谔算子的谱理论。薛定谔方程是数学物理中的基本方程之一。该项目将侧重于了解势函数的性质如何影响波的散射。在逼近理论领域,本研究研究了以下经典问题:单位圆(或实直线)上的多项式正交线相对于某一给定类的度量的大小是多少。将考虑以各种方式确定措施的规模和各类措施。例如,该项目将研究一类围绕给定常量有固定振荡的权重。该项目的第二部分将主要关注两个活跃的标量方程:二维欧拉流体动力学方程和地表准地转方程。本课程将讨论不稳定性问题,特别是将研究补丁动力学,并分析中心对称对的合并机制。本项目的第三个主题将解决多维散射问题。我们将考虑粗糙势下的薛定谔演化,并研究散射理论的经典问题。为了开展所提出的研究,将使用调和和复变分析方法,以及非线性分析和偏微分方程组理论。通过对研究生和本科生的培训,该项目将对人力资源开发产生影响。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Growth of the Support of Positive Vorticity for 2D Euler Equation in an Infinite Cylinder
无限圆柱内二维欧拉方程正涡度支持度的增长
- DOI:10.1007/s00220-019-03295-w
- 发表时间:2019
- 期刊:
- 影响因子:2.4
- 作者:Choi, Kyudong;Denisov, Sergey
- 通讯作者:Denisov, Sergey
Self-adjoint Jacobi matrices on trees and multiple orthogonal polynomials
树和多个正交多项式上的自伴雅可比矩阵
- DOI:10.1090/tran/7959
- 发表时间:2020
- 期刊:
- 影响因子:1.3
- 作者:Aptekarev, Alexander I.;Denisov, Sergey A.;Yattselev, Maxim L.
- 通讯作者:Yattselev, Maxim L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergey Denisov其他文献
Macrostate equivalence of two gen- eral ensembles and specic relative entropies
两个一般系综和特定相对熵的宏观状态等价
- DOI:
10.1103/physreve.94.020101 - 发表时间:
2016 - 期刊:
- 影响因子:2.4
- 作者:
Tatsuhiko Shirai;Juzar Thingna;Takashi Mori;Sergey Denisov;Peter Hanggi;and Seiji Miyashita;Takashi Mori - 通讯作者:
Takashi Mori
Orthogonal Polynomials on the Circle for the Weight w Satisfying Conditions $$w,w^{-1}\in \mathrm{BMO}$$
- DOI:
10.1007/s00365-016-9350-6 - 发表时间:
2016-07-11 - 期刊:
- 影响因子:1.200
- 作者:
Sergey Denisov;Keith Rush - 通讯作者:
Keith Rush
Transporting cold atoms in optical lattices with ratchets: Symmetries and Mechanisms
用棘轮在光学晶格中传输冷原子:对称性和机制
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Sergey Denisov;Sergej Flach;P. Hänggi - 通讯作者:
P. Hänggi
Collective current rectification
- DOI:
10.1016/j.physa.2006.11.061 - 发表时间:
2006-08 - 期刊:
- 影响因子:3.3
- 作者:
Sergey Denisov - 通讯作者:
Sergey Denisov
Universal spectra of noisy parameterized quantum circuits
噪声参数化量子电路的通用谱
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kristian Wold;Pedro Ribeiro;Sergey Denisov - 通讯作者:
Sergey Denisov
Sergey Denisov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergey Denisov', 18)}}的其他基金
Topics in Analysis, Spectral Theory, and Partial Differential Equations
分析、谱理论和偏微分方程主题
- 批准号:
2054465 - 财政年份:2021
- 资助金额:
$ 21.81万 - 项目类别:
Standard Grant
Analysis of evolution equations and related problems
演化方程及相关问题分析
- 批准号:
1067413 - 财政年份:2011
- 资助金额:
$ 21.81万 - 项目类别:
Continuing Grant
Research in Approximation and Scattering Theory
近似与散射理论研究
- 批准号:
0758239 - 财政年份:2008
- 资助金额:
$ 21.81万 - 项目类别:
Standard Grant
Analysis of some Orthogonal Systems and Operators: One-Dimensional and Multidimensional Problems
一些正交系统和算子的分析:一维和多维问题
- 批准号:
0500177 - 财政年份:2005
- 资助金额:
$ 21.81万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 21.81万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
- 批准号:
2400111 - 财政年份:2024
- 资助金额:
$ 21.81万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
- 批准号:
2400115 - 财政年份:2024
- 资助金额:
$ 21.81万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
- 批准号:
2400112 - 财政年份:2024
- 资助金额:
$ 21.81万 - 项目类别:
Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
- 批准号:
2344795 - 财政年份:2024
- 资助金额:
$ 21.81万 - 项目类别:
Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
- 批准号:
2344793 - 财政年份:2024
- 资助金额:
$ 21.81万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Managing the mixed messages of meta-analysis: How surgeons, policy makers, and judges cope with uncertainty
博士论文研究:管理荟萃分析的混合信息:外科医生、政策制定者和法官如何应对不确定性
- 批准号:
2341547 - 财政年份:2024
- 资助金额:
$ 21.81万 - 项目类别:
Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
- 批准号:
2344790 - 财政年份:2024
- 资助金额:
$ 21.81万 - 项目类别:
Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
- 批准号:
2344789 - 财政年份:2024
- 资助金额:
$ 21.81万 - 项目类别:
Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
- 批准号:
2344791 - 财政年份:2024
- 资助金额:
$ 21.81万 - 项目类别:
Standard Grant