Analysis of evolution equations and related problems
演化方程及相关问题分析
基本信息
- 批准号:1067413
- 负责人:
- 金额:$ 17.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main goal of this project is to study the long-time behavior of certain linear and nonlinear evolution equations. In the linear case, the problems of interest include the following: the long-time behavior and growth of Sobolev norms of solutions to evolution equations when the value of the coupling constant is generic; applications to multidimensional scattering for Schrodinger operators with slowly decaying or random potentials; the analysis of the spatial asymptotics of Green's function for Schrodinger equations; and sharp results for the dynamics in one-dimensional wave equations with decaying potentials. The nonlinear evolution equations to be studied in this project have their origins in two-dimensional incompressible fluid dynamics. Specifically, the equations to be studied are the Euler equation and the surface quasigeostrophic equation. The project will address the issue of instability for these equations. In the case of the Euler equation, the problem of optimal growth of the Sobolev norms of vorticity will be studied, while in the quasigeostrophic setting the scenario of blow-up in finite time will be considered. To make a progress, the principal investigator will use the tools of harmonic analysis (multilinear operators, potential theory, harmonic measure, singular integrals), approximation theory (polynomials orthogonal on the circle and on the real line), probability (Ito's calculus), and spectral theory for self-adjoint operators and hyperbolic pencils. This project will focus on mathematical problems that are central to quantum and fluid mechanics. Quantum mechanics, which was created and developed in the last century, is a basic branch of the modern physics, and the dynamics of fluids is another branch of physics studied as early as the eighteenth century by Leonhard Euler. The analysis of evolution equations and wave propagation in the presence of rough or random medium suggested in this project is a central problem of quantum mechanics, so this research has a potential impact on the development of that field. One of the most intriguing problems in fluid dynamics is the problem of singularity formation. This phenomenon is ubiquitous in nature and one goal of this project is to study its mechanism mathematically by focusing on some simplified two-dimensional models. To accomplish these goals, tools from various areas of mathematics will be refined and applied, which will advance these fields as well. The work on the project will include mentoring graduate students and coaching undergraduate research teams. This will have an additional impact on human resource development.
本课题的主要目的是研究某些线性和非线性演化方程的长期行为。在线性情况下,关注的问题包括:当耦合常数为一般值时,演化方程解的Sobolev范数的长期行为和增长;具有慢衰减或随机势的薛定谔算符在多维散射中的应用薛定谔方程格林函数的空间渐近性分析;并对具有衰减势的一维波动方程的动力学得到了清晰的结果。本课题研究的非线性演化方程来源于二维不可压缩流体动力学。具体来说,要研究的方程是欧拉方程和曲面拟地转方程。该项目将解决这些方程的不稳定性问题。对于欧拉方程,将研究涡度Sobolev范数的最优增长问题,而在准等转情况下,将考虑有限时间内爆炸的情况。为了取得进展,首席研究员将使用调和分析(多线性算子、势理论、调和测度、奇异积分)、近似理论(圆上和实线上正交的多项式)、概率(伊藤微积分)和自伴随算子和双曲铅笔的谱理论等工具。这个项目将集中于量子和流体力学的核心数学问题。量子力学是上个世纪创立和发展起来的,是现代物理学的一个基本分支,而流体动力学是物理学的另一个分支,早在18世纪就由莱昂哈德·欧拉研究过。本课题提出的粗糙或随机介质下的演化方程和波传播分析是量子力学的核心问题,因此本研究对量子力学的发展具有潜在的影响。流体动力学中最有趣的问题之一是奇点的形成问题。这种现象在自然界是普遍存在的,本项目的目标之一是通过一些简化的二维模型来研究其数学机制。为了实现这些目标,来自各个数学领域的工具将被改进和应用,这也将推动这些领域的发展。该项目的工作将包括指导研究生和指导本科生研究团队。这将对人力资源发展产生额外的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergey Denisov其他文献
Macrostate equivalence of two gen- eral ensembles and specic relative entropies
两个一般系综和特定相对熵的宏观状态等价
- DOI:
10.1103/physreve.94.020101 - 发表时间:
2016 - 期刊:
- 影响因子:2.4
- 作者:
Tatsuhiko Shirai;Juzar Thingna;Takashi Mori;Sergey Denisov;Peter Hanggi;and Seiji Miyashita;Takashi Mori - 通讯作者:
Takashi Mori
Orthogonal Polynomials on the Circle for the Weight w Satisfying Conditions $$w,w^{-1}\in \mathrm{BMO}$$
- DOI:
10.1007/s00365-016-9350-6 - 发表时间:
2016-07-11 - 期刊:
- 影响因子:1.200
- 作者:
Sergey Denisov;Keith Rush - 通讯作者:
Keith Rush
Transporting cold atoms in optical lattices with ratchets: Symmetries and Mechanisms
用棘轮在光学晶格中传输冷原子:对称性和机制
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Sergey Denisov;Sergej Flach;P. Hänggi - 通讯作者:
P. Hänggi
Collective current rectification
- DOI:
10.1016/j.physa.2006.11.061 - 发表时间:
2006-08 - 期刊:
- 影响因子:3.3
- 作者:
Sergey Denisov - 通讯作者:
Sergey Denisov
Universal spectra of noisy parameterized quantum circuits
噪声参数化量子电路的通用谱
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kristian Wold;Pedro Ribeiro;Sergey Denisov - 通讯作者:
Sergey Denisov
Sergey Denisov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergey Denisov', 18)}}的其他基金
Topics in Analysis, Spectral Theory, and Partial Differential Equations
分析、谱理论和偏微分方程主题
- 批准号:
2054465 - 财政年份:2021
- 资助金额:
$ 17.07万 - 项目类别:
Standard Grant
Research in Approximation and Scattering Theory
近似与散射理论研究
- 批准号:
0758239 - 财政年份:2008
- 资助金额:
$ 17.07万 - 项目类别:
Standard Grant
Analysis of some Orthogonal Systems and Operators: One-Dimensional and Multidimensional Problems
一些正交系统和算子的分析:一维和多维问题
- 批准号:
0500177 - 财政年份:2005
- 资助金额:
$ 17.07万 - 项目类别:
Standard Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
发展/减排路径(SSPs/RCPs)下中国未来人口迁移与集聚时空演变及其影响
- 批准号:19ZR1415200
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
研究蝙蝠冬眠現象的分子进化机制
- 批准号:31100273
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于microRNA前体性质的microRNA演化研究
- 批准号:31100951
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
星系演化背景下的年轻超大质量星团:悬而未决的难题
- 批准号:11073001
- 批准年份:2010
- 资助金额:50.0 万元
- 项目类别:面上项目
在我们的门前发掘化石——利用中国即将开展的巡天来研究银河系的演化
- 批准号:11043005
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
基于传孢类型藓类植物系统的修订
- 批准号:30970188
- 批准年份:2009
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Surface evolution equations and geometric analysis of viscosity solutions
表面演化方程和粘度解的几何分析
- 批准号:
23K03175 - 财政年份:2023
- 资助金额:
$ 17.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evolution equations with the coexistence of fractional derivatives and nonlinear structures -perturbation theory and asymptotic analysis-
分数阶导数与非线性结构并存的演化方程-微扰理论与渐近分析-
- 批准号:
21K18581 - 财政年份:2021
- 资助金额:
$ 17.07万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Quantitative analysis for nonlinear evolution equations of diffusion type
扩散型非线性演化方程的定量分析
- 批准号:
21KK0044 - 财政年份:2021
- 资助金额:
$ 17.07万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Evolution equations describing non-standard irreversible processes --Analysis on singularities emerging in the dynamics of solutions--
描述非标准不可逆过程的演化方程--解动力学中出现的奇点分析--
- 批准号:
20H01812 - 财政年份:2020
- 资助金额:
$ 17.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis on decay structure of evolution equations arising in Mathematical physics
数学物理中演化方程的衰变结构分析
- 批准号:
20K03682 - 财政年份:2020
- 资助金额:
$ 17.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applied Analysis of solutions to boundary value problems for evolution equations
演化方程边值问题解的应用分析
- 批准号:
2593211 - 财政年份:2019
- 资助金额:
$ 17.07万 - 项目类别:
Studentship
Systematical geometric analysis and asymptotic analysis for evolution equations
演化方程的系统几何分析和渐近分析
- 批准号:
19H05599 - 财政年份:2019
- 资助金额:
$ 17.07万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
"Analysis and applications of nonlinear evolution equations: waves, patterns, and singularities."
“非线性演化方程的分析和应用:波、模式和奇点。”
- 批准号:
251124-2012 - 财政年份:2016
- 资助金额:
$ 17.07万 - 项目类别:
Discovery Grants Program - Individual
Analysis on moving singularities in evolution equations
演化方程中的移动奇点分析
- 批准号:
16K13769 - 财政年份:2016
- 资助金额:
$ 17.07万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
"Analysis and applications of nonlinear evolution equations: waves, patterns, and singularities."
“非线性演化方程的分析和应用:波、模式和奇点。”
- 批准号:
251124-2012 - 财政年份:2015
- 资助金额:
$ 17.07万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




