EAGER: Salicylic acid signaling in plant pathogen interactions

EAGER:植物病原体相互作用中的水杨酸信号传导

基本信息

  • 批准号:
    1464527
  • 负责人:
  • 金额:
    $ 14.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

During their lifetime plants face many kinds of abiotic and biotic stresses. Major threats include fungal, oomycete, viral, bacterial and nematode pathogens. It is estimated that diseases caused by these plant pathogens reduce plant yield by 10-20% every year. Over millions of years of molecular interactions and co-evolution of host plants and their pathogens, plants developed a sophisticated immune system that senses an impending infection and organizes appropriate defense responses. A key and essential player in this process is the hormone salicylic acid (SA). Although receiving considerable attention from the research community, essential aspects of its role in immunity remain unknown. This project seeks to resolve fundamental new mechanisms through which this major immune regulator achieves its effects. These may provide new strategies for developing disease resistant crop plants. As a master regulator of plant defense, the protein NPR1 is required for SA-mediated systemic acquired resistance (SAR) and basal defense. In the absence of pathogens or SA treatment, most NPR1 exists in the cytosol as oligomers. After pathogen challenge or SA treatment, NPR1 oligomers are reduced to monomers which enter the nucleus where they function as transcriptional coactivators, binding TGA transcription factors to activate the expression of plant defense genes. Recent publications demonstrated that NPR1 and its paralogs NPR3 and NPR4 bind SA with different affinities and function as SA receptors. In addition, the PI has identified HEN3, a nuclear kinase which is required for NPR1 monomer formation, plant defense gene expression and SAR. Significantly, SA promotes interactions between NPR1 and TGA1/4 transcription factors in a yeast two-hybrid assay, thus supporting the hypothesis that SA and NPR1 activate plant defense through increased protein-protein interactions between NPR1 and TGA1/4. This project seeks to resolve molecular mechanisms that underlie and regulate the function of this key immune signaling hub. Mechanisms to be explored include the role of the HEN3 kinase in regulating NPR1 function, and the effect of SA on interactions between NPR1/3/4 and TGA1/4. The broader impacts of the project include the participation of a postdoc, a graduate student and four undergraduates, including two from groups underrepresented in the sciences.
植物在其一生中面临着多种非生物和生物胁迫。主要威胁包括真菌、卵菌、病毒、细菌和线虫病原体。据估计,由这些植物病原体引起的疾病每年使植物产量减少10-20%。经过数百万年的分子相互作用和宿主植物及其病原体的共同进化,植物发展了一种复杂的免疫系统,可以感知即将发生的感染并组织适当的防御反应。在这个过程中的一个关键和重要的球员是激素水杨酸(SA)。虽然受到研究界的相当大的关注,但其在免疫中的作用的基本方面仍然未知。该项目旨在解决这种主要免疫调节剂实现其效果的基本新机制。这可能为培育抗病作物提供新的策略。作为植物防御的主要调节因子,NPR 1蛋白是SA介导的系统获得抗性(SAR)和基础防御所必需的。在没有病原体或SA处理的情况下,大多数NPR 1作为寡聚体存在于胞质溶胶中。在病原体攻击或SA处理后,NPR 1寡聚体被还原成单体,这些单体进入细胞核,在那里它们作为转录共激活因子发挥作用,结合TGA转录因子以激活植物防御基因的表达。最近的出版物表明,NPR 1及其旁系同源物NPR 3和NPR 4以不同的亲和力结合SA,并作为SA受体发挥功能。此外,PI还鉴定了HEN 3,一种NPR 1单体形成、植物防御基因表达和SAR所需的核激酶。值得注意的是,SA促进NPR 1和TGA 1/4转录因子之间的相互作用,在酵母双杂交试验,从而支持的假设,SA和NPR 1激活植物防御通过增加NPR 1和TGA 1/4之间的蛋白质-蛋白质相互作用。该项目旨在解决这个关键免疫信号枢纽的基础和调节功能的分子机制。有待探索的机制包括HEN 3激酶在调节NPR 1功能中的作用,以及SA对NPR 1/3/4和TGA 1/4之间相互作用的影响。该项目更广泛的影响包括一名博士后、一名研究生和四名本科生的参与,其中两名来自科学领域代表性不足的群体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhengqing Fu其他文献

Uniqueness of Successive Positive Solution for Nonlocal Singular Higher-Order Fractional Differential Equations Involving Arbitrary Derivatives
涉及任意导数的非局部奇异高阶分数阶微分方程逐次正解的唯一性
  • DOI:
    10.1155/2018/6207682
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Qiuyan Zhong;Xingqiu Zhang;Xinyi Lu;Zhengqing Fu
  • 通讯作者:
    Zhengqing Fu
Autoinhibition and cofactors of a helper NLR
  • DOI:
    10.1007/s11427-024-2708-0
  • 发表时间:
    2024-12-04
  • 期刊:
  • 影响因子:
    9.500
  • 作者:
    Hongyuan Zheng;Xuemin Zhou;Chenyu Zhao;Daowen Wang;Zhengqing Fu
  • 通讯作者:
    Zhengqing Fu
Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions
涉及耦合积分边界条件的非线性Hadamard分数阶微分方程组的正解
  • DOI:
    10.1186/s13660-019-2156-x
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Jiqiang Jiang;Donal O’Regan;Jiafa Xu;Zhengqing Fu
  • 通讯作者:
    Zhengqing Fu
Flooding plant apoplast through water and solute channels.
通过水和溶质通道淹没植物质外体。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    44.1
  • 作者:
    Jianping Zhang;Daowen Wang;Zhengqing Fu
  • 通讯作者:
    Zhengqing Fu
Unraveling the mysteries of (L)WY-domain oomycete effectors
解开(L)WY 结构域卵菌效应子的奥秘
  • DOI:
    10.1016/j.scib.2023.10.030
  • 发表时间:
    2023-12-15
  • 期刊:
  • 影响因子:
    21.100
  • 作者:
    Hongyuan Zheng;Liyuan You;Shuaijie Meng;Daowen Wang;Zhengqing Fu
  • 通讯作者:
    Zhengqing Fu

Zhengqing Fu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhengqing Fu', 18)}}的其他基金

Coordination of Plant Growth and Defense Through Key Regulators in Salicylic Acid and Brassinosteroid Pathways
通过水杨酸和油菜素类固醇途径的关键调节剂协调植物生长和防御
  • 批准号:
    2207677
  • 财政年份:
    2022
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Continuing Grant
Targeting of salicylic acid-activated NPR1 by a bacterial type III effector
III 型细菌效应子靶向水杨酸激活的 NPR1
  • 批准号:
    1758994
  • 财政年份:
    2018
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Standard Grant

相似海外基金

Mechanochemical Synthesis of Salicylic Acid-Based Scaffolds for Pharmaceutical, Energy, and Catalytic Applications
用于制药、能源和催化应用的水杨酸支架的机械化学合成
  • 批准号:
    547712-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
A high-performance liquid chromatography (HPLC) system for analyzing plant defense hormone salicylic acid
用于分析植物防御激素水杨酸的高效液相色谱 (HPLC) 系统
  • 批准号:
    RTI-2023-00119
  • 财政年份:
    2022
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Research Tools and Instruments
Coordination of Plant Growth and Defense Through Key Regulators in Salicylic Acid and Brassinosteroid Pathways
通过水杨酸和油菜素类固醇途径的关键调节剂协调植物生长和防御
  • 批准号:
    2207677
  • 财政年份:
    2022
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Continuing Grant
Elucidation of salicylic acid-responsive transcriptional mechanism in plant immunity
植物免疫中水杨酸响应转录机制的阐明
  • 批准号:
    21K15121
  • 财政年份:
    2021
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mechanochemical Synthesis of Salicylic Acid-Based Scaffolds for Pharmaceutical, Energy, and Catalytic Applications
用于制药、能源和催化应用的水杨酸支架的机械化学合成
  • 批准号:
    547712-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Mechanochemical Synthesis of Salicylic Acid-Based Scaffolds for Pharmaceutical, Energy, and Catalytic Applications
用于制药、能源和催化应用的水杨酸支架的机械化学合成
  • 批准号:
    547712-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Elucidation of signal transduction pathways that regulate the biosynthesis of a plant immune hormone salicylic acid
阐明调节植物免疫激素水杨酸生物合成的信号转导途径
  • 批准号:
    20H03274
  • 财政年份:
    2020
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Targeting of salicylic acid-activated NPR1 by a bacterial type III effector
III 型细菌效应子靶向水杨酸激活的 NPR1
  • 批准号:
    1758994
  • 财政年份:
    2018
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Standard Grant
Study of novel salicylic acid analogs for anti brain tumor reagent
新型水杨酸类似物抗脑肿瘤试剂的研究
  • 批准号:
    17K07237
  • 财政年份:
    2017
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAPSI: The Role of Salicylic Acid Binding Plant Lectins in Hormone Regulated Processes
EAPSI:水杨酸结合植物凝集素在激素调节过程中的作用
  • 批准号:
    1713978
  • 财政年份:
    2017
  • 资助金额:
    $ 14.8万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了