Coordination of Plant Growth and Defense Through Key Regulators in Salicylic Acid and Brassinosteroid Pathways

通过水杨酸和油菜素类固醇途径的关键调节剂协调植物生长和防御

基本信息

  • 批准号:
    2207677
  • 负责人:
  • 金额:
    $ 57.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

In their natural environments, plants can be infected by many pathogens including fungi, bacteria, oomycetes, viruses, and nematodes. Therefore, a robust immune system is a prerequisite for the survival of plants. Unfortunately, when plants allocate energy for defense instead of growth, there is a fitness cost, which will compromise plant growth, resulting crop yield loss. The plant defense hormone salicylic acid (SA) plays an essential role in plant defense against many pathogens. In contrast, the endogenous hormones called brassinosteroids (BRs) regulate multiple physiological processes required for normal plant growth and development. Plants have developed sophisticated strategies to coordinate growth and immunity, but our understanding of the underlying mechanisms remains limited. This project aims to unravel fundamental mechanisms of plant growth and defense coordination through interactions between key regulators in BR and SA pathways. These studies will greatly increase the understanding of how plants achieve balanced growth and defense at the molecular level and will ultimately contribute to the development of effective and novel strategies to control crop diseases without significant yield loss. Funding from this project will be used to train middle and high students and teachers on detecting citrus greening disease at early stages before the citrus trees show any obvious symptoms. By connecting molecular technology with urgent real-life problems, our program will showcase the importance of plant science and inspire students to become the next generation of leading plant scientists. Plants deploy a two-tiered surveillance system, which includes pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI), to recognize invading pathogens. After a local infection by a pathogen, plants can activate stronger and faster defense responses in the entire plant against later infections by a broad spectrum of pathogens. This phenomenon is termed systemic acquired resistance (SAR). Early studies have demonstrated that EDS1 and NPR1 function as two central hubs in SA-mediated plant defense, while BZR1 and BES1 act as two key transcription factors in the plant growth hormone BR signaling. This project focuses on investigating how plants optimize growth and defense through the crosstalk between BR and SA. The preliminary data have shown that both EDS1 and NPR1 interact with BES1, while EDS1 is also physically associated with BZR1. The published data demonstrated that SA, NPR1, and EDS1 inhibit hypocotyl elongation, while BZR1 regulates ETI. The first objective of this project is to study whether and how BZR1 and BES1 influence PTI through interacting with EDS1 and NPR1. The second objective is to determine if and how BZR1 and BES1 impact ETI and systemic plant immunity by affecting the functions of EDS1 and NPR1. The final objective is to elucidate the roles of EDS1 and NPR1 in SA-mediated plant growth inhibition through their physical associations with key regulators in the BR pathway.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在自然环境中,植物可以被许多病原体感染,包括真菌、细菌、卵菌、病毒和线虫。因此,强大的免疫系统是植物生存的先决条件。不幸的是,当植物将能量分配给防御而不是生长时,就会产生适合性成本,这将损害植物的生长,导致作物产量损失。植物防御激素水杨酸(SA)在植物抵御多种病原菌的过程中起着至关重要的作用。相反,被称为油菜素类固醇(BRs)的内源激素调节植物正常生长和发育所需的多种生理过程。植物已经发展出复杂的策略来协调生长和免疫,但我们对潜在机制的了解仍然有限。该项目旨在通过BR和SA途径中关键调控因子之间的相互作用来揭示植物生长和防御协调的基本机制。这些研究将极大地提高对植物如何在分子水平上实现平衡生长和防御的理解,并最终将有助于开发有效和新颖的策略来控制作物病害而不造成重大产量损失。该项目的资金将用于培训中、高级学生和教师,在柑橘树出现任何明显症状之前,及早发现柑橘绿化病。通过将分子技术与紧迫的现实生活问题联系起来,我们的计划将展示植物科学的重要性,并激励学生成为下一代领先的植物科学家。植物采用两层监控系统,包括病原体相关分子模式(PAMP)触发免疫(PTI)和效应器触发免疫(ETI),以识别入侵的病原体。在受到病原体的局部感染后,植物可以在整个植物中激活更强、更快的防御反应,以抵御后来被广泛范围的病原体感染。这种现象被称为系统获得性抗性(SAR)。早期的研究表明,EDS1和NPR1在SA介导的植物防御中起着两个中心枢纽的作用,而BZR1和BES1则是植物生长激素BR信号转导中的两个关键转录因子。本项目致力于研究植物如何通过BR和SA之间的串扰来优化生长和防御。初步数据表明,EDS1和NPR1都与BES1相互作用,而EDS1也与BZR1物理上相关。已发表的数据表明,SA、NPR1和EDS1抑制下胚轴的伸长,而BZR1调节ETI。本项目的第一个目标是研究BZR1和BES1是否以及如何通过与EDS1和NPR1的相互作用来影响PTI。第二个目标是确定BZR1和BES1是否以及如何通过影响EDS1和NPR1的功能来影响ETI和系统植物免疫。最终目标是阐明EDS1和NPR1在SA介导的植物生长抑制中的作用,通过它们与BR途径中的关键调控因子的物理联系。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Caffeoylputrescine-hexenal-mediated nonhost resistance against leafhoppers
咖啡酰腐胺己烯醛介导的叶蝉非寄主抗性
  • DOI:
    10.1016/j.tplants.2022.05.009
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    20.5
  • 作者:
    Mohan, Rajinikanth;Spells, Sara;Wang, Daowen;Fu, Zheng Qing
  • 通讯作者:
    Fu, Zheng Qing
Achieving a more robust antiviral RNAi via subverting a viral virulence protein
  • DOI:
    10.1016/j.molp.2022.09.020
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    27.5
  • 作者:
    Liyuan You;Ruize Zhang;Z. Fu
  • 通讯作者:
    Liyuan You;Ruize Zhang;Z. Fu
PBS3 : a versatile player in and beyond salicylic acid biosynthesis in Arabidopsis
PBS3:拟南芥水杨酸生物合成中的多才多艺的参与者
  • DOI:
    10.1111/nph.18558
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Li, Wei;He, Jinyu;Wang, Xiuzhuo;Ashline, Matthew;Wu, Zirui;Liu, Fengquan;Fu, Zheng Qing;Chang, Ming
  • 通讯作者:
    Chang, Ming
A war on the cell wall
细胞壁上的战争
  • DOI:
    10.1016/j.molp.2021.12.009
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    27.5
  • 作者:
    Chen, Jian;Chen, Huan;Liu, Fengquan;Fu, Zheng Qing
  • 通讯作者:
    Fu, Zheng Qing
Join the green team: Inducers of plant immunity in the plant disease sustainable control toolbox
  • DOI:
    10.1016/j.jare.2023.04.016
  • 发表时间:
    2024-02-28
  • 期刊:
  • 影响因子:
    10.7
  • 作者:
    Zhu, Feng;Cao, Meng-Yao;Fu, Zheng Qing
  • 通讯作者:
    Fu, Zheng Qing
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhengqing Fu其他文献

Uniqueness of Successive Positive Solution for Nonlocal Singular Higher-Order Fractional Differential Equations Involving Arbitrary Derivatives
涉及任意导数的非局部奇异高阶分数阶微分方程逐次正解的唯一性
  • DOI:
    10.1155/2018/6207682
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Qiuyan Zhong;Xingqiu Zhang;Xinyi Lu;Zhengqing Fu
  • 通讯作者:
    Zhengqing Fu
Autoinhibition and cofactors of a helper NLR
  • DOI:
    10.1007/s11427-024-2708-0
  • 发表时间:
    2024-12-04
  • 期刊:
  • 影响因子:
    9.500
  • 作者:
    Hongyuan Zheng;Xuemin Zhou;Chenyu Zhao;Daowen Wang;Zhengqing Fu
  • 通讯作者:
    Zhengqing Fu
Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions
涉及耦合积分边界条件的非线性Hadamard分数阶微分方程组的正解
  • DOI:
    10.1186/s13660-019-2156-x
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Jiqiang Jiang;Donal O’Regan;Jiafa Xu;Zhengqing Fu
  • 通讯作者:
    Zhengqing Fu
Flooding plant apoplast through water and solute channels.
通过水和溶质通道淹没植物质外体。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    44.1
  • 作者:
    Jianping Zhang;Daowen Wang;Zhengqing Fu
  • 通讯作者:
    Zhengqing Fu
Unraveling the mysteries of (L)WY-domain oomycete effectors
解开(L)WY 结构域卵菌效应子的奥秘
  • DOI:
    10.1016/j.scib.2023.10.030
  • 发表时间:
    2023-12-15
  • 期刊:
  • 影响因子:
    21.100
  • 作者:
    Hongyuan Zheng;Liyuan You;Shuaijie Meng;Daowen Wang;Zhengqing Fu
  • 通讯作者:
    Zhengqing Fu

Zhengqing Fu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhengqing Fu', 18)}}的其他基金

Targeting of salicylic acid-activated NPR1 by a bacterial type III effector
III 型细菌效应子靶向水杨酸激活的 NPR1
  • 批准号:
    1758994
  • 财政年份:
    2018
  • 资助金额:
    $ 57.44万
  • 项目类别:
    Standard Grant
EAGER: Salicylic acid signaling in plant pathogen interactions
EAGER:植物病原体相互作用中的水杨酸信号传导
  • 批准号:
    1464527
  • 财政年份:
    2015
  • 资助金额:
    $ 57.44万
  • 项目类别:
    Standard Grant

相似国自然基金

Molecular Plant
  • 批准号:
    31224801
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Molecular Plant
  • 批准号:
    31024802
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Journal of Integrative Plant Biology
  • 批准号:
    31024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Quinone compounds as novel plant growth regulators
醌类化合物作为新型植物生长调节剂
  • 批准号:
    24K01718
  • 财政年份:
    2024
  • 资助金额:
    $ 57.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of regulatory mechanisms of the growth hormone cytokinin and nitrogen dynamics in plant adaptation to nitrate fluctuation stress
阐明植物适应硝酸盐波动胁迫中生长激素细胞分裂素和氮动态的调节机制
  • 批准号:
    24K18138
  • 财政年份:
    2024
  • 资助金额:
    $ 57.44万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Predicting plant growth in naturally fluctuating conditions
预测自然波动条件下的植物生长
  • 批准号:
    BB/Y513945/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.44万
  • 项目类别:
    Research Grant
Collaborative Research: How to manipulate a plant? Testing for conserved effectors and plant responses in gall induction and growth using a multi-species comparative approach.
合作研究:如何操纵植物?
  • 批准号:
    2305880
  • 财政年份:
    2023
  • 资助金额:
    $ 57.44万
  • 项目类别:
    Standard Grant
Integrating membrane processes into hydroponics systems to promote plant growth, recover added-value root exudates and recycle nutrients
将膜工艺集成到水培系统中,以促进植物生长、回收增值根系分泌物并回收养分
  • 批准号:
    EP/X018660/1
  • 财政年份:
    2023
  • 资助金额:
    $ 57.44万
  • 项目类别:
    Research Grant
EDGE CMT: Genetic basis of plant root growth traits and their response to environment
EDGE CMT:植物根部生长性状的遗传基础及其对环境的响应
  • 批准号:
    2220726
  • 财政年份:
    2023
  • 资助金额:
    $ 57.44万
  • 项目类别:
    Continuing Grant
Identification and characterization of a plant growth promoter from wild plants: is this a novel plant hormone agonist?
野生植物中植物生长促进剂的鉴定和表征:这是一种新型植物激素激动剂吗?
  • 批准号:
    23K05057
  • 财政年份:
    2023
  • 资助金额:
    $ 57.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of the positive effect of the root parasitic plant metabolites on the host plant growth
根部寄生植物代谢产物对寄主植物生长的积极影响分析
  • 批准号:
    23K18010
  • 财政年份:
    2023
  • 资助金额:
    $ 57.44万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
SnRK2-Raf36 module is involved in plant growth regulation under drought stress
SnRK2-Raf36模块参与干旱胁迫下的植物生长调控
  • 批准号:
    23H02497
  • 财政年份:
    2023
  • 资助金额:
    $ 57.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
High-resolution imaging and spatial dissection of directional plant growth responses to light
定向植物生长对光响应的高分辨率成像和空间剖析
  • 批准号:
    2885699
  • 财政年份:
    2023
  • 资助金额:
    $ 57.44万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了