Targeting of salicylic acid-activated NPR1 by a bacterial type III effector

III 型细菌效应子靶向水杨酸激活的 NPR1

基本信息

  • 批准号:
    1758994
  • 负责人:
  • 金额:
    $ 48.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Plant diseases caused by pathogens pose a major threat to food security worldwide. A deeper understanding of how plant pathogens cause diseases lays foundations for developing effective strategies to keep plant diseases under control for sustainable agriculture. Many plant pathogens including fungi, bacteria, nematodes, bacteria, and oomycetes rely on effectors that they deliver into plant cells to suppress plant defenses and establish infection. The plant hormone salicylic acid plays an essential role in plant defense against pathogen infection. The investigators discovered that a bacterial type III effector targets the master regulator of salicylic acid-mediated plant defense for degradation, causing disease. This project aims to elucidate the molecular mechanism and biological consequences of the bacterial effector-mediated degradation of the master regulator, and identify a mutant form of the regulator, which cannot be degraded by the effector. This non-degradable regulator could potentially be used to generate disease-resistant plants. Disease-resistant crops are critical to feed a global world population on a decreasing amount of arable land, and to reduce the amount of environmentally harmful pesticides. Two graduate and four undergraduate students will be supported through this project each year. Funding will also be used to train middle school teachers and students in South Carolina to detect citrus greening disease before citrus trees show obvious symptoms in SCienceLab. By connecting hands-on cutting-edge experimentation with urgent real life plant pathology problems, this project will inspire students and make them aware of the importance of plant science. This project focuses on the targeting of SA-activated NPR1 by the Psudomonas syringae type III effector AvrPtoB. Though it has been known for many years that NPR1 plays an essential role in both local and systemic plant defense, it has not been reported that a pathogen effector targets NPR1. SA facilitates the reduction of plant cytosolic NPR1 oligomers into monomers, which enter the nucleus and function as transcriptional coactivators of plant defense genes. This project showed that SA promotes the interaction between AvrPtoB and NPR1, suggesting that AvrPtoB only interacts with the active form of NPR1. This project demonstrated that AvrPtoB targets NPR1 for degradation, dependent on AvrPtoB's E3 ligase activity. In addition, this project found that the master regulator of SA signaling, NPR1, plays an important role in MTI (MAMP-triggered immunity). This proposal seeks to 1) investigate how SA promotes the interaction between NPR1 and AvrPtoB by determining if AvrPtoB only targets monomeric NPR1 protein, 2) determine the molecular mechanism of AvrPtoB-mediated poly-ubiquitination and degradation of NPR1, 3) show how NPR1 contributes to MTI, and 4) determine how AvrPtoB targets SA-activated NPR1 to disrupt NPR1-dependent MTI to subvert plant innate immunity. These studies will provide fresh insights into effector biology and increase our understanding of MTI and the molecular and biological functions of NPR1 and SA in plant defense. The work will involve training of two postdoctoral fellows to perform research and mentoring of undergraduate students from under-represented groups to empower them to pursue careers in scientific disciplines.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
病原体引起的植物病害对全世界粮食安全构成重大威胁。更深入地了解植物病原体如何引起疾病,为制定有效的战略奠定了基础,以控制植物疾病,实现可持续农业。许多植物病原体,包括真菌、细菌、线虫、细菌和卵菌,依赖于它们递送到植物细胞中的效应物来抑制植物防御并建立感染。植物激素水杨酸在植物防御病原体感染中起重要作用。研究人员发现,一种细菌III型效应子靶向水杨酸介导的植物防御的主要调节因子,使其降解,引起疾病。本项目旨在阐明细菌效应子介导的主调节子降解的分子机制和生物学后果,并鉴定不能被效应子降解的调节子的突变形式。这种不可降解的调节剂有可能用于产生抗病植物。抗病作物对于在日益减少的可耕地上养活全球人口以及减少对环境有害的农药数量至关重要。每年将通过该项目资助两名研究生和四名本科生。资金还将用于培训南卡罗来纳州的中学教师和学生,在柑橘树在SCienceLab中表现出明显症状之前检测柑橘绿化病。通过将动手尖端实验与紧迫的真实的生命植物病理学问题联系起来,该项目将激励学生并使他们意识到植物科学的重要性。该项目的重点是靶向SA激活的NPR1的Psuspiciumingae III型效应AvrPtoB。尽管多年来人们已经知道NPR 1在局部和系统性植物防御中发挥着重要作用,但尚未有病原体效应子靶向NPR 1的报道。SA促进植物胞质NPR 1寡聚体还原成单体,单体进入细胞核并作为植物防御基因的转录共激活因子发挥作用。该项目表明SA促进AvrPtoB和NPR1之间的相互作用,表明AvrPtoB仅与NPR1的活性形式相互作用。该项目表明,AvrPtoB靶向NPR 1降解,这取决于AvrPtoB的E3连接酶活性。此外,该项目发现SA信号传导的主调节因子NPR 1在MTI(MAMP触发免疫)中起重要作用。该提案旨在1)通过确定AvrPtoB是否仅靶向单体NPR 1蛋白来研究SA如何促进NPR 1和AvrPtoB之间的相互作用,2)确定AvrPtoB介导的NPR 1的多聚泛素化和降解的分子机制,3)显示NPR 1如何有助于MTI,以及4)确定AvrPtoB如何靶向SA激活的NPR 1以破坏NPR 1依赖的MTI从而破坏植物先天免疫。这些研究将为效应生物学提供新的见解,并增加我们对MTI以及NPR1和SA在植物防御中的分子和生物学功能的理解。这项工作将包括培训两名博士后研究员进行研究,并指导来自代表性不足群体的本科生,使他们能够追求科学学科的职业生涯。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Bacterial Type III Effector Targets the Master Regulator of Salicylic Acid Signaling, NPR1, to Subvert Plant Immunity
  • DOI:
    10.1016/j.chom.2017.10.019
  • 发表时间:
    2017-12-13
  • 期刊:
  • 影响因子:
    30.3
  • 作者:
    Chen, Huan;Chen, Jian;Fu, Zheng Qing
  • 通讯作者:
    Fu, Zheng Qing
Salicylic acid-mediated plant defense: Recent developments, missing links, and future outlook
  • DOI:
    10.1007/s11515-017-1460-4
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Palmer;Zhenhua Shang*;Z. Fu
  • 通讯作者:
    I. Palmer;Zhenhua Shang*;Z. Fu
Novel Salicylic Acid Analogs Induce a Potent Defense Response in Arabidopsis
新型水杨酸类似物在拟南芥中诱导有效的防御反应
  • DOI:
    10.3390/ijms20133356
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Palmer, Ian Arthur;Chen, Huan;Chen, Jian;Chang, Ming;Li, Min;Liu, Fengquan;Fu, Zheng Qing
  • 通讯作者:
    Fu, Zheng Qing
PBS3 Protects EDS1 from Proteasome-Mediated Degradation in Plant Immunity
PBS3 保护 EDS1 免受植物免疫中蛋白酶体介导的降解
  • DOI:
    10.1016/j.molp.2019.01.023
  • 发表时间:
    2019-05-06
  • 期刊:
  • 影响因子:
    27.5
  • 作者:
    Chang, Ming;Zhao, Jinping;Fu, Zheng Qing
  • 通讯作者:
    Fu, Zheng Qing
TIRggering cell death via two enzymatic reactions
通过两种酶促反应引发细胞死亡
  • DOI:
    10.1016/j.molp.2022.07.004
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    27.5
  • 作者:
    Liu, Na;Chen, Huan;Wang, Xu;Wang, Daowen;Fu, Zheng Qing
  • 通讯作者:
    Fu, Zheng Qing
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhengqing Fu其他文献

Uniqueness of Successive Positive Solution for Nonlocal Singular Higher-Order Fractional Differential Equations Involving Arbitrary Derivatives
涉及任意导数的非局部奇异高阶分数阶微分方程逐次正解的唯一性
  • DOI:
    10.1155/2018/6207682
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Qiuyan Zhong;Xingqiu Zhang;Xinyi Lu;Zhengqing Fu
  • 通讯作者:
    Zhengqing Fu
Autoinhibition and cofactors of a helper NLR
  • DOI:
    10.1007/s11427-024-2708-0
  • 发表时间:
    2024-12-04
  • 期刊:
  • 影响因子:
    9.500
  • 作者:
    Hongyuan Zheng;Xuemin Zhou;Chenyu Zhao;Daowen Wang;Zhengqing Fu
  • 通讯作者:
    Zhengqing Fu
Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions
涉及耦合积分边界条件的非线性Hadamard分数阶微分方程组的正解
  • DOI:
    10.1186/s13660-019-2156-x
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Jiqiang Jiang;Donal O’Regan;Jiafa Xu;Zhengqing Fu
  • 通讯作者:
    Zhengqing Fu
Flooding plant apoplast through water and solute channels.
通过水和溶质通道淹没植物质外体。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    44.1
  • 作者:
    Jianping Zhang;Daowen Wang;Zhengqing Fu
  • 通讯作者:
    Zhengqing Fu
Unraveling the mysteries of (L)WY-domain oomycete effectors
解开(L)WY 结构域卵菌效应子的奥秘
  • DOI:
    10.1016/j.scib.2023.10.030
  • 发表时间:
    2023-12-15
  • 期刊:
  • 影响因子:
    21.100
  • 作者:
    Hongyuan Zheng;Liyuan You;Shuaijie Meng;Daowen Wang;Zhengqing Fu
  • 通讯作者:
    Zhengqing Fu

Zhengqing Fu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhengqing Fu', 18)}}的其他基金

Coordination of Plant Growth and Defense Through Key Regulators in Salicylic Acid and Brassinosteroid Pathways
通过水杨酸和油菜素类固醇途径的关键调节剂协调植物生长和防御
  • 批准号:
    2207677
  • 财政年份:
    2022
  • 资助金额:
    $ 48.76万
  • 项目类别:
    Continuing Grant
EAGER: Salicylic acid signaling in plant pathogen interactions
EAGER:植物病原体相互作用中的水杨酸信号传导
  • 批准号:
    1464527
  • 财政年份:
    2015
  • 资助金额:
    $ 48.76万
  • 项目类别:
    Standard Grant

相似海外基金

Effects of Fish Oil ± Salsalate on the Omega-3 Index and the Circulating Lipodome of Omega-3 Polyunsaturated Fatty Acid Metabolites in Patients with Type 2 Diabetes and Diabetic Neuropathy
鱼油±水杨酸对 2 型糖尿病和糖尿病神经病变患者 Omega-3 指数和 Omega-3 多不饱和脂肪酸代谢物循环脂质组的影响
  • 批准号:
    10296769
  • 财政年份:
    2022
  • 资助金额:
    $ 48.76万
  • 项目类别:
Effects of Fish Oil ± Salsalate on the Omega-3 Index and the Circulating Lipodome of Omega-3 Polyunsaturated Fatty Acid Metabolites in Patients with Type 2 Diabetes and Diabetic Neuropathy
鱼油±水杨酸对 2 型糖尿病和糖尿病神经病变患者 Omega-3 指数和 Omega-3 多不饱和脂肪酸代谢物循环脂质组的影响
  • 批准号:
    10558558
  • 财政年份:
    2022
  • 资助金额:
    $ 48.76万
  • 项目类别:
Mechanochemical Synthesis of Salicylic Acid-Based Scaffolds for Pharmaceutical, Energy, and Catalytic Applications
用于制药、能源和催化应用的水杨酸支架的机械化学合成
  • 批准号:
    547712-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 48.76万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Mass transport in the inner-ear fluid
内耳液体中的质量运输
  • 批准号:
    10580498
  • 财政年份:
    2022
  • 资助金额:
    $ 48.76万
  • 项目类别:
A high-performance liquid chromatography (HPLC) system for analyzing plant defense hormone salicylic acid
用于分析植物防御激素水杨酸的高效液相色谱 (HPLC) 系统
  • 批准号:
    RTI-2023-00119
  • 财政年份:
    2022
  • 资助金额:
    $ 48.76万
  • 项目类别:
    Research Tools and Instruments
Coordination of Plant Growth and Defense Through Key Regulators in Salicylic Acid and Brassinosteroid Pathways
通过水杨酸和油菜素类固醇途径的关键调节剂协调植物生长和防御
  • 批准号:
    2207677
  • 财政年份:
    2022
  • 资助金额:
    $ 48.76万
  • 项目类别:
    Continuing Grant
Investigating the Effects of Plant Hormones on Intercellular Trafficking via Plasmodesmata
研究植物激素对胞间连丝运输的影响
  • 批准号:
    10538215
  • 财政年份:
    2022
  • 资助金额:
    $ 48.76万
  • 项目类别:
Micronized salsalate in a parenteral formulation is a safe and effective analgesic for acute postoperative pain management
肠外制剂中的微粉化水杨酸是一种安全有效的止痛药,用于急性术后疼痛管理
  • 批准号:
    10394982
  • 财政年份:
    2021
  • 资助金额:
    $ 48.76万
  • 项目类别:
Micronized salsalate in a parenteral formulation is a safe and effective analgesic for acute postoperative pain management
肠外制剂中的微粉化水杨酸是一种安全有效的止痛药,用于急性术后疼痛管理
  • 批准号:
    10377820
  • 财政年份:
    2021
  • 资助金额:
    $ 48.76万
  • 项目类别:
Elucidation of salicylic acid-responsive transcriptional mechanism in plant immunity
植物免疫中水杨酸响应转录机制的阐明
  • 批准号:
    21K15121
  • 财政年份:
    2021
  • 资助金额:
    $ 48.76万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了