Large scale geometry of Polish groups
波兰群体的大尺度几何结构
基本信息
- 批准号:1464974
- 负责人:
- 金额:$ 29.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A topological transformation group is the set of symmetries of a geometric object such as the set of rigid motions of 3-dimensional space, rotations of a planar disc or symmetries of another similar object. While topological transformation groups are quite trivially connected to geometry by the objects of which they are symmetries, this is not so for more general groups, that is, sets equipped with a notion of multiplication or addition. For example, solutions to differential equations can often be seen as points or vectors in infinite-dimensional spaces, namely so called Banach spaces, and such points can be added together to form new points in the space. So the solution spaces to differential equations are themselves groups. As it turns out, groups have an intrinsically defined large scale geometric structure. That is, as groups are seen from farther and farther away, the microscopical structure becomes blurred and one is left with a macroscopical perspective, which may be accessible to computation and provide structural information about the groups themselves. The PI will investigate groups from this large scale perspective, in particular expanding the existing theory to various infinite-dimensional groups originating in logic, topology and analysis.The PI intends to conduct research on the large scale geometry of Polish groups. While large scale geometry of discrete or locally compact groups has been a very active area for quite some time, the realisation that Polish groups may have a well-defined large scale geometry is very recent. Several aspects to be investigated concern the large scale geometry of various concrete classes of groups such as homeomorphism and diffeomorphism groups of compact manifolds and automorphism groups of countable first-order structures. In the latter case, one particular issue is to calibrate geometric properties of the automorphism group with the model theoretical properties of the structure. The nature of the proposal is very much interdisciplinary. On the one hand, it will involve descriptive set theory, via the study of Polish groups, model theory, via the study of automorphism groups, while at the same time incorporating the multifaceted instruments of geometric group theory. On the other hand, the theory allows for a geometric study of a number of topological transformation groups that were not hitherto amenable to such an approach, which again should open up for connections with areas such as geometric and differential topology.
拓扑转换组是几何对象的对称性集合,例如3维空间的刚性运动,平面盘的旋转或另一个类似对象的对称性。虽然拓扑转换组通过它们是对称的对象非常微不足道地连接到几何形状,但对于更一般的组而言,它并非如此,即配备有乘法或添加概念的集合。例如,微分方程的解决方案通常可以看作是无限维空间中的点或向量,即所谓的Banach空间,并且可以将这些点加在一起以在空间中形成新的点。因此,差分方程的解空间本身就是群体。事实证明,组具有本质上定义的大规模几何结构。也就是说,从较远和更远的地方可以看出组,显微镜结构变得模糊,并且一个剩下的宏观透视图,可以通过计算来访问,并提供有关组本身的结构信息。 PI将从这个大规模的角度研究群体,特别是将现有理论扩展到源自逻辑,拓扑和分析的各种无限二维群体。PI打算对波兰群体的大规模几何形状进行研究。尽管很长一段时间以来,虽然离散或局部紧凑的组的大规模几何形状一直是一个非常活跃的区域,但非常新近的意识到波兰人可能具有明确的大规模几何形状。需要研究的几个方面涉及各种混凝土类别的大规模几何形状,例如同构和差异歧管的差异和差异群,以及可计数的一阶结构组的自多态群体。在后一种情况下,一个特殊的问题是用结构的模型理论特性来校准自动形态组的几何特性。该提案的性质是跨学科的。一方面,它将通过对自动形态群体的研究来涉及描述性集理论,通过对波兰群体,模型理论的研究,同时结合了几何群体理论的多方面工具。另一方面,该理论允许对迄今不适合这种方法的许多拓扑转换组进行几何研究,这些拓扑转换组应再次与几何和差异拓扑等领域的联系开放。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christian Rosendal其他文献
A topological version of the Bergman property
伯格曼性质的拓扑版本
- DOI:
10.1515/forum.2009.014 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Christian Rosendal - 通讯作者:
Christian Rosendal
Entanglement of a circular mapping catheter in the mitral valve with persistent iatrogenic atrial septal defect after attempted pulmonary vein isolation: a word of caution.
尝试肺静脉隔离后,圆形标测导管在二尖瓣中与持续性医源性房间隔缺损纠缠:需要注意。
- DOI:
10.5761/atcs.cr.12.01967 - 发表时间:
2014 - 期刊:
- 影响因子:1.3
- 作者:
A. Weymann;B. Schmack;H. Rauch;Christian Rosendal;M. Karck;G. Szabó - 通讯作者:
G. Szabó
DESCRIPTIVE CLASSIFICATION THEORY AND SEPARABLE BANACH SPACES
描述性分类理论和可分 Banach 空间
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Christian Rosendal - 通讯作者:
Christian Rosendal
Isomorphism of borel full groups
Borel满群同构
- DOI:
10.1090/s0002-9939-06-08542-x - 发表时间:
2006 - 期刊:
- 影响因子:1.2
- 作者:
B. D. Miller;Christian Rosendal - 通讯作者:
Christian Rosendal
Displaying Polish Groups on Separable Banach Spaces
在可分离 Banach 空间上显示波兰群
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
V. Ferenczi;Christian Rosendal - 通讯作者:
Christian Rosendal
Christian Rosendal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christian Rosendal', 18)}}的其他基金
Coarse Geometry of Topological Groups
拓扑群的粗略几何
- 批准号:
2204849 - 财政年份:2021
- 资助金额:
$ 29.98万 - 项目类别:
Continuing Grant
Coarse Geometry of Topological Groups
拓扑群的粗略几何
- 批准号:
1764247 - 财政年份:2018
- 资助金额:
$ 29.98万 - 项目类别:
Continuing Grant
Descriptive set theory and its relations with functional and harmonic analysis
描述集合论及其与泛函分析和调和分析的关系
- 批准号:
1201295 - 财政年份:2012
- 资助金额:
$ 29.98万 - 项目类别:
Continuing Grant
Applications of descriptive set theory to functional analysis and topological dynamics
描述集合论在泛函分析和拓扑动力学中的应用
- 批准号:
0901405 - 财政年份:2009
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
相似国自然基金
基于基因组数据自动化分析为后生动物类群大规模开发扩增子捕获探针的实现
- 批准号:32370477
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于容量驱动的大规模异构天线阵列关键技术研究
- 批准号:62301460
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向大规模强化学习任务的预测控制理论与方法研究
- 批准号:62376179
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于黎曼流体空间的大规模知识图谱感知推荐关键技术研究
- 批准号:62376135
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向非对称收发机的大规模MIMO传输理论与方法研究
- 批准号:62301221
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 29.98万 - 项目类别:
Continuing Grant
Exploring Large-Scale Geometry via Local and Nonlocal Potential Theory
通过局部和非局部势理论探索大尺度几何
- 批准号:
2348748 - 财政年份:2024
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
BRAIN CONNECTS: A Center for High-throughput Integrative Mouse Connectomics
大脑连接:高通量集成鼠标连接组学中心
- 批准号:
10665380 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:
10667903 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
A New Pipeline for Detailed Large Scale Geometry Acquisition and Analysis
用于详细的大规模几何采集和分析的新流程
- 批准号:
RGPIN-2021-03477 - 财政年份:2022
- 资助金额:
$ 29.98万 - 项目类别:
Discovery Grants Program - Individual