Coarse Geometry of Topological Groups
拓扑群的粗略几何
基本信息
- 批准号:1764247
- 负责人:
- 金额:$ 23.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Groups appear in numerous areas of mathematics, chemistry and physics and have had tremendous impact as an organizational tool within mathematics. They often appear as the set of symmetries of a geometric object, for example, of 3-dimensional space, a molecule or a crystal. Oftentimes, the set of symmetries themselves, i.e., the group, has a natural topological structure. That is, one can speak of one symmetry being close to another, as in the case of two rotations of 3-dimensional space being close if they differ by a small angle. These latter groups are called topological transformation groups and are trivially related to geometry via the geometric object of which they are the set of symmetries. However, other topological groups are not so easily viewed as coming from geometry. This is, for example, the case for the systems of solutions to many differential equations which form a group under addition called a Banach space. However, one of the principal ideas of the present project is that all topological groups have natural intrinsic geometric structure which is defined jointly by their topological and algebraic structure. Moreover, this geometric structure can in many cases provide significant insight into the structure of the group by blotting out finer details that obscure the global or large scale properties of the group.The primary aim of this project is to investigate the coarse geometry of topological and, in particular, Polish groups. In earlier research, the PI has established and investigated a natural coarse structure that every topological group is equipped with and which coincides with that traditionally studied on finitely generated or locally compact groups, Banach spaces or even homeomorphism groups of compact manifolds. Particularly interesting subclasses to be studied are the Polish groups of bounded geometry for which the geometric structure theory is well-advanced. Several interesting questions on the extent of this class of groups remain open, for example, whether every Polish group of bounded geometry is coarsely equivalent to a locally compact group. The research program is by nature interdisciplinary. While its origins lie in descriptive set theory, the main examples of groups to be studied arise in various disciplines of mathematics, including functional analysis, logic, and geometric and differential topology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
小组出现在数学,化学和物理学的许多领域中,并且作为数学中的组织工具产生了巨大影响。它们通常以几何对象的对称性(例如3维空间,分子或晶体)的形式出现。通常,一组对称性本身,即群体具有自然拓扑结构。也就是说,一个人可以说一个对称性靠近另一个对称性,例如,如果三维空间的两个旋转,则如果它们以小角度的不同,则它们是接近的。这些后一组称为拓扑转换组,并通过几何对象与几何对象相关。但是,其他拓扑组并不容易被视为来自几何形状。例如,这是针对许多微分方程的解决方案系统的情况,这些方程形成了一个在添加的班级空间下的组。但是,本项目的主要思想之一是所有拓扑组都有自然的内在几何结构,这是由它们的拓扑结构和代数结构共同定义的。此外,在许多情况下,这种几何结构可以通过掩盖掩盖该组的全球或大规模特性的更细节来对组的结构进行重大见解。该项目的主要目的是研究拓扑,尤其是波兰群体的粗糙几何形状。在较早的研究中,PI建立并研究了每个拓扑组都配备的自然粗糙结构,并与传统上研究有限产生或局部紧凑的群体,Banach空间甚至同型紧凑型歧管的群体相吻合。要研究的特别有趣的子类是几何结构理论的界限几何形状群。例如,关于这类群体范围的几个有趣的问题仍然是开放的,例如,每一个界限的几何形状是否都与本地紧凑的群体相当。该研究计划本质上是跨学科的。尽管它的起源在于描述性集理论,但要研究的群体的主要例子是在数学的各种学科中出现的,包括功能分析,逻辑,几何和差异拓扑。该奖项反映了NSF的法定任务,并通过使用该基金会的智力功能和广泛的影响来评估CRITERIA CRITERIA。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CONTINUITY OF UNIVERSALLY MEASURABLE HOMOMORPHISMS
普遍可测同态的连续性
- DOI:10.1017/fmp.2019.5
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:ROSENDAL, CHRISTIAN
- 通讯作者:ROSENDAL, CHRISTIAN
Light groups of isomorphisms of Banach spaces and invariant LUR renormings
Banach 空间同构的轻群和不变 LUR 重整
- DOI:10.2140/pjm.2019.301.31
- 发表时间:2019
- 期刊:
- 影响因子:0.6
- 作者:Antunes, Leandro;Ferenczi, Valentin;Grivaux, Sophie;Rosendal, Christian
- 通讯作者:Rosendal, Christian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christian Rosendal其他文献
A topological version of the Bergman property
伯格曼性质的拓扑版本
- DOI:
10.1515/forum.2009.014 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Christian Rosendal - 通讯作者:
Christian Rosendal
DESCRIPTIVE CLASSIFICATION THEORY AND SEPARABLE BANACH SPACES
描述性分类理论和可分 Banach 空间
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Christian Rosendal - 通讯作者:
Christian Rosendal
Entanglement of a circular mapping catheter in the mitral valve with persistent iatrogenic atrial septal defect after attempted pulmonary vein isolation: a word of caution.
尝试肺静脉隔离后,圆形标测导管在二尖瓣中与持续性医源性房间隔缺损纠缠:需要注意。
- DOI:
10.5761/atcs.cr.12.01967 - 发表时间:
2014 - 期刊:
- 影响因子:1.3
- 作者:
A. Weymann;B. Schmack;H. Rauch;Christian Rosendal;M. Karck;G. Szabó - 通讯作者:
G. Szabó
Isomorphism of borel full groups
Borel满群同构
- DOI:
10.1090/s0002-9939-06-08542-x - 发表时间:
2006 - 期刊:
- 影响因子:1.2
- 作者:
B. D. Miller;Christian Rosendal - 通讯作者:
Christian Rosendal
Displaying Polish Groups on Separable Banach Spaces
在可分离 Banach 空间上显示波兰群
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
V. Ferenczi;Christian Rosendal - 通讯作者:
Christian Rosendal
Christian Rosendal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christian Rosendal', 18)}}的其他基金
Coarse Geometry of Topological Groups
拓扑群的粗略几何
- 批准号:
2204849 - 财政年份:2021
- 资助金额:
$ 23.99万 - 项目类别:
Continuing Grant
Large scale geometry of Polish groups
波兰群体的大尺度几何结构
- 批准号:
1464974 - 财政年份:2015
- 资助金额:
$ 23.99万 - 项目类别:
Continuing Grant
Descriptive set theory and its relations with functional and harmonic analysis
描述集合论及其与泛函分析和调和分析的关系
- 批准号:
1201295 - 财政年份:2012
- 资助金额:
$ 23.99万 - 项目类别:
Continuing Grant
Applications of descriptive set theory to functional analysis and topological dynamics
描述集合论在泛函分析和拓扑动力学中的应用
- 批准号:
0901405 - 财政年份:2009
- 资助金额:
$ 23.99万 - 项目类别:
Standard Grant
相似国自然基金
基于拓扑几何学的致密油藏跨尺度润湿机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
- 批准号:42102149
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
微分流形几何学与拓扑学的历史研究
- 批准号:11801553
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连通自相似分形的拓扑学与拟共形几何学
- 批准号:11871200
- 批准年份:2018
- 资助金额:52.0 万元
- 项目类别:面上项目
大脑神经回路间信息传递的拓扑几何学功能磁共振成像研究:以选择性视觉注意为应用载体
- 批准号:61871105
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 23.99万 - 项目类别:
Fellowship Award
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
- 批准号:
2401178 - 财政年份:2024
- 资助金额:
$ 23.99万 - 项目类别:
Standard Grant
Refinement and q-deformation of topological recursion and their applications
拓扑递归的细化和q变形及其应用
- 批准号:
23K12968 - 财政年份:2023
- 资助金额:
$ 23.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
- 批准号:
10884028 - 财政年份:2023
- 资助金额:
$ 23.99万 - 项目类别:
DMS/NIGMS 1: Topological Dynamics Models of Protein Function
DMS/NIGMS 1:蛋白质功能的拓扑动力学模型
- 批准号:
10794436 - 财政年份:2023
- 资助金额:
$ 23.99万 - 项目类别: