SaTC-EDU: EAGER Enhancing Cybersecurity Education Through a Representational Fluency Model

SaTC-EDU:渴望通过代表性流利模型加强网络安全教育

基本信息

  • 批准号:
    1500046
  • 负责人:
  • 金额:
    $ 29.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-15 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Cybersecurity experts must possess several abilities: deep technical skills, the capability to recognize and respond to complex and emergent behavior, mastery of using abstractions and principles, the ability to assess risk and handle uncertainty, problem-solving and reasoning skills, and facility in adversarial thinking. Based on cognitive theory, this project will investigate the efficacy of model eliciting activities for developing students' ability to recognize and respond to complex and emergent behavior, and how to handle uncertainty and ambiguity. This project extends the theory of representational fluency, which has been proven to be a powerful tool to effectively teach complex concepts in the field of Science and Mathematics to the cybersecurity domain. The findings from this project will shed light on how representational fluency can shape the cognitive schema and cultivate the cybersecurity mindset. The goals of this project are to: 1) develop model eliciting educational activities that teach network security related concepts using and translating among multiple representations, 2) investigate students' representational fluency and schema of these concepts, and 3) investigate the relationship of students' development of schema and changes in their cognitive processing and control. While the context for this educational research will be network security and the students will be at the undergraduate level, the theory and framework built through this research should be relevant to other knowledge areas in cybersecurity and applicable to different levels of students and professionals in different settings including university classroom or adult continuous education.
网络安全专家必须具备几种能力:深厚的技术技能,识别和应对复杂和紧急行为的能力,掌握使用抽象和原则的能力,评估风险和处理不确定性的能力,解决问题和推理能力,以及对抗性思维的能力。本研究将以认知理论为基础,探讨模型启发活动对培养学生认知和应对复杂和突发行为的能力,以及如何处理不确定性和模糊性的有效性。该项目扩展了表征流畅性理论,该理论已被证明是将科学和数学领域的复杂概念有效教授到网络安全领域的强大工具。 该项目的研究结果将揭示表征流畅性如何塑造认知图式并培养网络安全思维模式。本研究的目的是:1)开发一种启发式的教育活动模式,通过使用多种表征来教授网络安全相关概念,2)调查学生对这些概念的表征流畅性和图式,3)调查学生图式发展与认知加工和控制变化的关系。 虽然这项教育研究的背景将是网络安全,学生将处于本科阶段,但通过这项研究建立的理论和框架应与网络安全的其他知识领域相关,并适用于不同环境中的不同层次的学生和专业人员,包括大学课堂或成人继续教育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Baijian Yang其他文献

Design issues, Topology issues, Quality of Service Support for Wireless Sensor Networks: Survey and Research Challenges
无线传感器网络的设计问题、拓扑问题、服务质量支持:调查和研究挑战
  • DOI:
    10.5120/151-272
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. F. Akyildiz;W. Su;Y. Sankarasubramaniam;Mo Li;Baijian Yang;K. Sohraby;D. Minoli;T. Znati
  • 通讯作者:
    T. Znati
Mo1518 DETERMINANTS OF RISKS ASSOCIATED WITH ALCOHOL-ASSOCIATED HEPATITIS OR PANCREATITIS: A COMPREHENSIVE ANALYSIS OF THE ALL OF US COHORT
  • DOI:
    10.1016/s0016-5085(24)04312-9
  • 发表时间:
    2024-05-18
  • 期刊:
  • 影响因子:
  • 作者:
    Chenxi Xiong;Xiang Liu;Wanzhu Tu;Baijian Yang;Suthat Liangpunsakul;Jing Su
  • 通讯作者:
    Jing Su

Baijian Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Baijian Yang', 18)}}的其他基金

Collaborative Research: CHEESE: Cyber Human Ecosystem of Engaged Security Education
合作研究:CHEESE:参与安全教育的网络人类生态系统
  • 批准号:
    1820573
  • 财政年份:
    2018
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
CICI: RDP: Supporting Controlled Unclassified Information with a Campus Awareness and Risk Management Framework
CICI:RDP:通过校园意识和风险管理框架支持受控非机密信息
  • 批准号:
    1840043
  • 财政年份:
    2018
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant

相似国自然基金

EDU增强冬小麦O3抗性的生理生态学机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SaTC-EDU: EAGER: Developing metaverse-native security and privacy curricula for high school students
SaTC-EDU:EAGER:为高中生开发元宇宙原生安全和隐私课程
  • 批准号:
    2335807
  • 财政年份:
    2023
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Secure and Privacy-Preserving Adaptive Artificial Intelligence Curriculum Development for Cybersecurity
合作研究:EAGER:SaTC-EDU:安全和隐私保护的网络安全自适应人工智能课程开发
  • 批准号:
    2335624
  • 财政年份:
    2023
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: Exploring Visualized and Explainable Artificial Intelligence to Improve Students’ Learning Experience in Digital Forensics Education
EAGER:SaTC-EDU:探索可视化和可解释的人工智能,以改善学生在数字取证教育中的学习体验
  • 批准号:
    2039289
  • 财政年份:
    2021
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: Cybersecurity Education in the Age of Artificial Intelligence: A Novel Proactive and Collaborative Learning Paradigm
EAGER:SaTC-EDU:人工智能时代的网络安全教育:一种新颖的主动协作学习范式
  • 批准号:
    2114974
  • 财政年份:
    2021
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: Transformative Educational Approaches to Meld Artificial Intelligence and Cybersecurity Mindsets
EAGER:SaTC-EDU:融合人工智能和网络安全思维的变革性教育方法
  • 批准号:
    2115025
  • 财政年份:
    2021
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Artificial Intelligence-Enhanced Cybersecurity: Workforce Needs and Barriers to Learning
协作研究:EAGER:SaTC-EDU:人工智能增强的网络安全:劳动力需求和学习障碍
  • 批准号:
    2113954
  • 财政年份:
    2021
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: A Life-Cycle Approach for Artificial Intelligence-Based Cybersecurity Education
EAGER:SaTC-EDU:基于人工智能的网络安全教育的生命周期方法
  • 批准号:
    2114680
  • 财政年份:
    2021
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Learning Platform and Education Curriculum for Artificial Intelligence-Driven Socially-Relevant Cybersecurity
合作研究:EAGER:SaTC-EDU:人工智能驱动的社会相关网络安全的学习平台和教育课程
  • 批准号:
    2114936
  • 财政年份:
    2021
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Teaching High School Students about Cybersecurity and Artificial Intelligence Ethics via Empathy-Driven Hands-On Projects
合作研究:EAGER:SaTC-EDU:通过同理心驱动的实践项目向高中生传授网络安全和人工智能伦理知识
  • 批准号:
    2114991
  • 财政年份:
    2021
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: Exploring Visualized and Explainable Artificial Intelligence to Improve Students’ Learning Experience in Digital Forensics Education
EAGER:SaTC-EDU:探索可视化和可解释的人工智能,以改善学生在数字取证教育中的学习体验
  • 批准号:
    2039287
  • 财政年份:
    2021
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了