Quantum Diffusion in Fluctuating Media
波动介质中的量子扩散
基本信息
- 批准号:1500386
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main focus of this project is the analysis of wave motion in a disordered environment. In a broader context, the research is aimed at answering a basic scientific question: "What are the effects of disorder?" This is a fundamental question relevant to any mathematical model, even one in which disorder is not explicitly included. After all, any real world system is subject to a small amount of noise, and experience shows that even weak disorder may have a profound effect on the behavior of the system. The equations studied in this project arise in the theory of electrical conduction in disordered materials, but are of general interest because of the fundamental nature of both wave motion and disorder. Progress in understanding the solutions to these equations will improve basic understanding of models of theoretical physics and applied mathematics. In addition, a central goal of the research is pedagogical: to introduce undergraduate and graduate students to a fundamental subject and convey to them that mathematics is a vibrant, growing field. The project will proceed through a program of research on the effects of disorder in physical models. A key goal is to analyze the diffusion of waves in a weakly disordered medium over arbitrarily long times. There is a rich non-rigorous theory of the weakly disordered regime in the physics literature based on heuristic analyses and uncontrolled, renormalized perturbation theory which suggests that waves propagate diffusively, characterized by spreading of wave packets over a distance proportional to the square root of t in time t. However, we are far from having a rigorous analysis of the mathematics involved. A major challenge is that diffusive propagation does not occur for waves in a non-random medium. Thus, a naive approach in which the disorder is incorporated perturbatively has not worked, indeed in the physics literature the problem is attacked with renormalized perturbation theory. In recent years the PI and various post-doc and student collaborators have considered the problem of wave diffusion in time-dependent random media, with the time dependence generated by a Markov process. For such models the diffusive propagation, e.g., for the tight binding Schrödinger equation, can be established by spectral analysis. One aim of the present project is to approach the time independent equation as a perturbation of these time dependent equations, which have the virtue of sharing the expected qualitative behavior.
该项目的主要重点是在无序环境中的波动分析。在更广泛的背景下,这项研究旨在回答一个基本的科学问题:“混乱的影响是什么?“这是一个与任何数学模型相关的基本问题,即使是没有明确包括无序的数学模型。毕竟,任何真实的世界系统都会受到少量噪声的影响,经验表明,即使是微弱的无序也可能对系统的行为产生深远的影响。在这个项目中研究的方程出现在无序材料中的导电理论中,但由于波动和无序的基本性质而引起了普遍的兴趣。在理解这些方程的解方面的进展将提高对理论物理和应用数学模型的基本理解。 此外,研究的一个中心目标是教学:向本科生和研究生介绍一个基础学科,并向他们传达数学是一个充满活力的,不断发展的领域。该项目将通过一项关于物理模型中无序影响的研究计划进行。一个关键目标是分析任意长时间内弱无序介质中波的扩散。 在物理学文献中有丰富的弱无序状态的非严格理论,其基于启发式分析和不受控制的重整化微扰理论,该理论表明波以扩散方式传播,其特征在于波包在与时间t的平方根成比例的距离上的传播。然而,我们还远远没有对所涉及的数学进行严格的分析。一个主要的挑战是,扩散传播不会发生在非随机介质中的波。因此,一个天真的方法,其中的障碍是纳入微扰没有工作,事实上,在物理学文献中的问题是攻击重整化微扰理论。近年来,PI和各种博士后和学生合作者考虑了随时间变化的随机介质中的波扩散问题,其时间依赖性由马尔可夫过程产生。对于这样的模型,扩散传播,例如,对于紧束缚薛定谔方程,可以通过谱分析建立。本项目的一个目的是将与时间无关的方程作为这些与时间相关的方程的扰动来处理,这些方程具有共享预期定性行为的优点。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Diffusion in the Mean for a Periodic Schrödinger Equation Perturbed by a Fluctuating Potential
受波动势扰动的周期性薛定谔方程的均值扩散
- DOI:10.1007/s00220-020-03692-6
- 发表时间:2020
- 期刊:
- 影响因子:2.4
- 作者:Schenker, Jeffrey;Tilocco, F. Zak;Zhang, Shiwen
- 通讯作者:Zhang, Shiwen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Schenker其他文献
Localization in the Disordered Holstein Model
- DOI:
10.1007/s00220-018-3271-0 - 发表时间:
2018-10-11 - 期刊:
- 影响因子:2.600
- 作者:
Rajinder Mavi;Jeffrey Schenker - 通讯作者:
Jeffrey Schenker
Diffusion of Wave Packets in a Markov Random Potential
马尔可夫随机势中波包的扩散
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Yang Kang;Jeffrey Schenker - 通讯作者:
Jeffrey Schenker
Constructive Fractional-Moment Criteria forLocalization in Random
随机定位的建设性分数矩准则
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
OperatorsMichael;Aizenman;Jeffrey Schenker;R. Friedrich;D. Hundertmark - 通讯作者:
D. Hundertmark
Diffusive Propagation of Wave Packets in a Fluctuating Periodic Potential
波动周期势中波包的扩散传播
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
E. Hamza;Yang Kang;Jeffrey Schenker - 通讯作者:
Jeffrey Schenker
On the Wegner orbital model
关于韦格纳轨道模型
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jeffrey Schenker;R. Peled;M. Shamis;S. Sodin - 通讯作者:
S. Sodin
Jeffrey Schenker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Schenker', 18)}}的其他基金
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401258 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Ergodic Quantum Processes: Localization, Diffusion, and Steady States
遍历量子过程:局域化、扩散和稳态
- 批准号:
2153946 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Localization and Diffusion in Open and Many Body Quantum Systems
开放多体量子系统中的局域化和扩散
- 批准号:
1900015 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
The 2018 Great Lakes Mathematical Physics Meeting
2018年五大湖数学物理会议
- 批准号:
1763855 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
The 2017 Great Lakes Mathematical Physics Meeting
2017年五大湖数学物理会议
- 批准号:
1700026 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Interpreting Data from Trapping of Stochastic Movers
解释随机动量陷阱的数据
- 批准号:
1411411 - 财政年份:2014
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似国自然基金
带drift-diffusion项的抛物型偏微分方程组的能控性与能稳性
- 批准号:61573012
- 批准年份:2015
- 资助金额:49.0 万元
- 项目类别:面上项目
Levy过程驱动的随机Fast-Diffusion方程的Harnack不等式及其应用
- 批准号:11126079
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Commercialisation of an All Electric Superplastic Forming/Diffusion Bonding Machine
全电动超塑性成型/扩散接合机的商业化
- 批准号:
10099250 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Collaborative R&D
CAREER: Well-posedness and long-time behavior of reaction-diffusion and kinetic equations
职业:反应扩散和动力学方程的适定性和长期行为
- 批准号:
2337666 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Thermo-Mechanical Separation by Atomic Diffusion for Refinement and Recycling of Alloys
通过原子扩散进行热机械分离,用于合金的精炼和回收
- 批准号:
2311311 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: EAR-PF: The effects of grain-scale deformation on helium diffusion and thermochronometric ages of accessory minerals
博士后奖学金:EAR-PF:晶粒尺度变形对氦扩散和副矿物热测年年龄的影响
- 批准号:
2305568 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Fellowship Award
3D Diffusion Models for Generating and Understanding 3D Scenes
用于生成和理解 3D 场景的 3D 扩散模型
- 批准号:
DP240101926 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Discovery Projects
Long time dynamics and genealogies of stochastic reaction-diffusion systems
随机反应扩散系统的长时间动力学和系谱
- 批准号:
2348164 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Understanding, Predicting and Controlling AI Hallucination in Diffusion Models for Image Inverse Problems
理解、预测和控制图像逆问题扩散模型中的 AI 幻觉
- 批准号:
2906295 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Studentship
Modeling the Diffusion of Evolving Rumours in Social Networks
对社交网络中不断演变的谣言传播进行建模
- 批准号:
DE240101049 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Discovery Early Career Researcher Award
Elucidation of the hydrogen isotope thermo-diffusion behavior in fusion materials using laser spectroscopy
使用激光光谱阐明聚变材料中氢同位素热扩散行为
- 批准号:
24K17033 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists