CAREER: Analysis of disordered systems

职业:无序系统分析

基本信息

  • 批准号:
    0846325
  • 负责人:
  • 金额:
    $ 47.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2015-09-30
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The project will focus on a rigorous analysis of wave propagation in disordered media, along with related analysis of random operators and matrices. The goal is to establish diffusive propagation of waves in a weakly disordered medium over arbitrarily long times. There is a rich non-rigorous theory of wave diffusion in the physics literature, based on heuristic analyses and uncontrolled perturbation theory, which suggests that diffusion occurs and predicts the leading order asymptotic behavior of the diffusion constant. In spite of the obvious importance of this problem, we are far from having a rigorous analysis of the mathematics involved. The PI will consider the problem from a number of view points, in particular using an ``augmented space" representation such as has proved useful in the analysis of random walks in random media and homogenization. Additionally the PI will consider related problems in the theory of random matrices, specifically random band matrices, with entries that vanish outside a band around the diagonal, which have been suggested as a model of a so-called metal-insulator transition as the bandwidth is moved from the matrix size down to one.What are the effects of disorder? This is a fundamental question in regards to any model of physics, even one in which disorder is not explicitly included. After all, any real world system is subject to a small amount of noise, and experience shows that even weak disorder may have a profound effect on the behavior of the system. Despite the fundamental nature of this subject, aspects of it remain poorly understood and it is not at present incorporated in the curriculum in an accessible way. This program seeks to bridge this gap as follows: 1) through the development of courses for undergraduates on the basic models of statistical mechanics and random matrix theory; and 2) by focused research on aspects of the question relevant to wave motion and semi-conductor physics. The goal of such work is to use analytical tools to further basic understanding of models of theoretical physics and applied mathematics. Such advances impact areas outside of mathematics and theoretical physics in the short run by yielding ideas for constructing new and better models useful in applications. In the long run, however, the impact will be even greater, as mathematical work illuminates those parts of physical theory that are truly fundamental.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。该项目将专注于对无序介质中波传播的严格分析,沿着随机算子和矩阵的相关分析。 我们的目标是建立一个弱无序介质中任意长时间的波的扩散传播。 在物理学文献中有丰富的波扩散的非严格理论,基于启发式分析和非受控扰动理论,其表明扩散发生并预测扩散常数的领先阶渐近行为。 尽管这个问题的重要性显而易见,但我们还远远没有对所涉及的数学问题进行严格的分析。 PI将从多个角度考虑这个问题,特别是使用“增强空间”表示法,例如在随机介质和均匀化中的随机游走分析中已被证明是有用的。 此外,PI将考虑随机矩阵理论中的相关问题,特别是随机带矩阵,其元素在对角线周围的带外消失,这被认为是所谓的金属-绝缘体转变的模型,因为带宽从矩阵大小下降到1。无序的影响是什么? 这是任何物理模型的基本问题,即使是没有明确包括无序的物理模型。 毕竟,任何真实的世界系统都会受到少量噪声的影响,经验表明,即使是微弱的无序也可能对系统的行为产生深远的影响。 尽管这一学科具有根本性,但人们对它的某些方面仍然知之甚少,而且目前还没有以一种易于理解的方式将其纳入课程。该计划旨在弥合这一差距如下:1)通过统计力学和随机矩阵理论的基本模型的本科生课程的发展;和2)通过集中研究有关波动和半导体物理问题的方面。 这项工作的目标是使用分析工具,进一步了解理论物理和应用数学的模型。 这些进展在短期内影响了数学和理论物理之外的领域,为构建新的和更好的模型提供了新的想法。然而,从长远来看,影响会更大,因为数学工作阐明了物理理论中真正基本的部分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Schenker其他文献

Localization in the Disordered Holstein Model
  • DOI:
    10.1007/s00220-018-3271-0
  • 发表时间:
    2018-10-11
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Rajinder Mavi;Jeffrey Schenker
  • 通讯作者:
    Jeffrey Schenker
Diffusion of Wave Packets in a Markov Random Potential
马尔可夫随机势中波包的扩散
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang Kang;Jeffrey Schenker
  • 通讯作者:
    Jeffrey Schenker
Constructive Fractional-Moment Criteria forLocalization in Random
随机定位的建设性分数矩准则
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    OperatorsMichael;Aizenman;Jeffrey Schenker;R. Friedrich;D. Hundertmark
  • 通讯作者:
    D. Hundertmark
Diffusive Propagation of Wave Packets in a Fluctuating Periodic Potential
波动周期势中波包的扩散传播
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Hamza;Yang Kang;Jeffrey Schenker
  • 通讯作者:
    Jeffrey Schenker
On the Wegner orbital model
关于韦格纳轨道模型
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeffrey Schenker;R. Peled;M. Shamis;S. Sodin
  • 通讯作者:
    S. Sodin

Jeffrey Schenker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Schenker', 18)}}的其他基金

Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
  • 批准号:
    2401258
  • 财政年份:
    2024
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Standard Grant
Ergodic Quantum Processes: Localization, Diffusion, and Steady States
遍历量子过程:局域化、扩散和稳态
  • 批准号:
    2153946
  • 财政年份:
    2022
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Standard Grant
Localization and Diffusion in Open and Many Body Quantum Systems
开放多体量子系统中的局域化和扩散
  • 批准号:
    1900015
  • 财政年份:
    2019
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Standard Grant
The 2018 Great Lakes Mathematical Physics Meeting
2018年五大湖数学物理会议
  • 批准号:
    1763855
  • 财政年份:
    2018
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Standard Grant
The 2017 Great Lakes Mathematical Physics Meeting
2017年五大湖数学物理会议
  • 批准号:
    1700026
  • 财政年份:
    2017
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Standard Grant
Quantum Diffusion in Fluctuating Media
波动介质中的量子扩散
  • 批准号:
    1500386
  • 财政年份:
    2015
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Standard Grant
Interpreting Data from Trapping of Stochastic Movers
解释随机动量陷阱的数据
  • 批准号:
    1411411
  • 财政年份:
    2014
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0202323
  • 财政年份:
    2002
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Fellowship Award

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Comprehensive analysis of intrinsically disordered proteins important for protein homeostasis
对蛋白质稳态重要的本质无序蛋白质的综合分析
  • 批准号:
    22KJ0830
  • 财政年份:
    2023
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
FTMA4 - Computational Biology to facilitate analysis and modulation of the function of intrinsically disordered regions in proteins
FTMA4 - 计算生物学,促进蛋白质本质无序区域功能的分析和调节
  • 批准号:
    BB/X01763X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Training Grant
Evaluation of disordered excitation coordination underlying gut hypersensitivity by functional micro-image analysis
通过功能微图像分析评估肠道超敏反应背后的紊乱兴奋协调
  • 批准号:
    23H02813
  • 财政年份:
    2023
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Stochastic Processes and Stochastic Analysis on Disordered Media
无序介质的随机过程和随机分析
  • 批准号:
    22H00099
  • 财政年份:
    2022
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
NSF/MCB-BSF: Direct force measurements and analysis of intrinsically disordered proteins
NSF/MCB-BSF:本质无序蛋白质的直接力测量和分析
  • 批准号:
    2113302
  • 财政年份:
    2021
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Continuing Grant
Punishing Illness? A Socio-legal Analysis of the Imposition of Custodial Sentences on Mentally Disordered Offenders in English Law and Practice.
惩罚疾病?
  • 批准号:
    2602266
  • 财政年份:
    2021
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Studentship
Cross-sectional and prospective study with metabolome analysis to detect pathophysiology about the relationship between deterioration in lung function and sleep disordered breathing
通过代谢组分析进行横断面和前瞻性研究,以检测肺功能恶化与睡眠呼吸障碍之间关系的病理生理学
  • 批准号:
    20H03690
  • 财政年份:
    2020
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Structural analysis of the reversible self-assembly mechanism by intrinsically disordered proteins
本质无序蛋白质的可逆自组装机制的结构分析
  • 批准号:
    19K06584
  • 财政年份:
    2019
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure/function analysis of the intrinsically disordered protein DAO-5
本质无序蛋白 DAO-5 的结构/功能分析
  • 批准号:
    526245-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 47.91万
  • 项目类别:
    University Undergraduate Student Research Awards
Dynamical structure analysis of intrinsically disordered proteins by neutron scattering using segment deuteration method
使用分段氘化法通过中子散射分析本质无序蛋白质的动态结构
  • 批准号:
    18H02391
  • 财政年份:
    2018
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了