Qualitative Properties of Eigenfunctions for some Selfadjoint and Non-selfadjoint partial differential equations

一些自共和非自共偏微分方程的本征函数的定性性质

基本信息

项目摘要

This project considers eigenfunctions, which are objects that give information about, for example, the vibrations of a ringing drum head. In other contexts, these eigenfunctions can describe, for example, how fluids mix on extremely small length scales, with potential applications to improved efficiency in medical drug delivery and dialysis. These eigenfunctions are fundamental building blocks to understand problems in mathematics, physics, chemistry, and even biomedical engineering. It is precisely these important fundamental connections between the proposed research and STEM subjects that makes this research have broader significance within the larger context of the STEM areas. The PI has been developing simple, instructional model problems related to most of his research for students and younger researchers. This project concerns research in the deep relationships between solutions to partial differential equations, differential geometry, dynamical systems, and mathematical physics. These different areas of mathematics are often tied together by problems in spectral theory and microlocal analysis; that is, problems concerned with eigenvalues, eigenfunctions, phase space localization, and the generalizations thereof. The research in this proposal is divided between selfadjoint and non-selfadjoint eigenfunction problems. The study of the behaviour of solutions to partial differential equations has a rich connection to the underlying geometry and classical phase space dynamics. For example, it is well known that eigenfunctions tend to concentrate along geodesics. If there are isolated periodic geodesics, one might expect a subsequence of eigenfunctions to concentrate along such geodesics. Understanding the rate of concentration is an extremely important question in quantum chaos. On the other hand, if the geodesic flow is sufficiently chaotic, one might expect the eigenfunctions to be equidistributed in phase space. It is important to investigate how robust these phenomena are, through phase space estimates, restriction estimates, and perturbations. For example, in the chaotic case, the PI and his collaborators are working to understand restrictions of eigenfunctions to hypersurfaces. With mild geometric assumptions on a hypersurface, they conjecture the mass of such restrictions is bounded above and below, independent of the eigenvalue. The methods of investigation will introduce new microlocal energy techniques, demonstrating how to generalize a problem, previously only understood on arithmetic surfaces using number theory, to very general geometric situations. Some properties of eigenfunctions tend to be stable under small complex perturbations, which means one can also understand some non-selfadjoint problems. For non-selfadjoint problems with larger imaginary component, perturbation techniques are no longer strictly valid. The PI is working to develop a general theory of geometric control adapted to degenerate advection-diffusion type equations of any order. This has straightforward applications to the Fokker-Planck equation and similar equations from statistical mechanics. This theory also has applications to certain models in theoretic micro-fluidics, with potential applications to efficient geometrically localized drug delivery and dialysis.
这个项目考虑了特征函数,这些特征函数是提供信息的对象,例如,振铃鼓头的振动。在其他情况下,这些特征函数可以描述,例如,流体如何在极小的长度尺度上混合,具有提高医疗药物输送和透析效率的潜在应用。这些特征函数是理解数学、物理、化学甚至生物医学工程问题的基本组成部分。正是这些重要的基础联系,使得本研究在STEM领域的大背景下具有更广泛的意义。PI一直在为学生和年轻研究人员开发与他的大多数研究相关的简单的教学模型问题。本项目主要研究偏微分方程解、微分几何、动力系统和数学物理之间的深层关系。这些不同的数学领域经常被谱理论和微局部分析中的问题联系在一起;即与特征值、特征函数、相空间局部化及其推广有关的问题。本文的研究分为自伴随特征函数问题和非自伴随特征函数问题。偏微分方程解的行为研究与基础几何和经典相空间动力学有着丰富的联系。例如,众所周知,特征函数倾向于沿测地线集中。如果存在孤立的周期测地线,人们可能会期望特征函数的子序列沿着这些测地线集中。在量子混沌中,理解浓度速率是一个极其重要的问题。另一方面,如果测地线流是足够混沌的,人们可以期望特征函数在相空间中是均匀分布的。通过相空间估计、限制估计和扰动来研究这些现象的鲁棒性是很重要的。例如,在混沌情况下,PI和他的合作者正在努力理解特征函数对超曲面的限制。通过对超曲面的温和几何假设,他们推测这些限制的质量是上下有界的,与特征值无关。研究方法将引入新的微局部能量技术,演示如何将以前只在算术曲面上使用数论理解的问题推广到非常一般的几何情况。特征函数的一些性质在小的复扰动下趋于稳定,这意味着我们也可以理解一些非自伴随问题。对于虚分量较大的非自伴随问题,摄动技术不再严格有效。PI正致力于发展一种适用于任何阶的退化平流扩散型方程的几何控制的一般理论。这可以直接应用于福克-普朗克方程和统计力学中的类似方程。该理论也适用于理论微流体的某些模型,在有效的几何定位药物输送和透析方面具有潜在的应用前景。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hans Christianson其他文献

Asymptotic Boundary Observability for the Wave Equation on One Side of a Planar Triangle
  • DOI:
    10.1007/s00023-019-00814-2
  • 发表时间:
    2019-06-04
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Hans Christianson;Evan Stafford
  • 通讯作者:
    Evan Stafford
Random Walk on Surfaces with Hyperbolic Cusps
  • DOI:
    10.1007/s00023-011-0085-4
  • 发表时间:
    2011-03-10
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Hans Christianson;Colin Guillarmou;Laurent Michel
  • 通讯作者:
    Laurent Michel
Energy distribution for Dirichlet eigenfunctions on right triangles
直角三角形上狄利克雷特征函数的能量分布
  • DOI:
    10.1016/j.jde.2024.06.012
  • 发表时间:
    2024-10-25
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Hans Christianson;Daniel Pezzi
  • 通讯作者:
    Daniel Pezzi

Hans Christianson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hans Christianson', 18)}}的其他基金

UNC PDE Mini-Schools
UNC PDE 迷你学校
  • 批准号:
    1501020
  • 财政年份:
    2015
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Microlocal analysis in nonlinear PDE and PDE on manifolds
非线性 PDE 和流形 PDE 中的微局域分析
  • 批准号:
    1059618
  • 财政年份:
    2010
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Microlocal analysis in nonlinear PDE and PDE on manifolds
非线性 PDE 和流形 PDE 中的微局域分析
  • 批准号:
    0900524
  • 财政年份:
    2009
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似海外基金

A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
  • 批准号:
    DP240102053
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Projects
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Training Grant
Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
  • 批准号:
    2333551
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
  • 批准号:
    2401482
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
  • 批准号:
    2403804
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
  • 批准号:
    2404011
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Characterization of the distribution and properties of inert copper in seawater
海水中惰性铜的分布和性质表征
  • 批准号:
    2343416
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
  • 批准号:
    24K17868
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了