Enumeration Problems in Algebraic Geometry and Representation Theory
代数几何和表示论中的枚举问题
基本信息
- 批准号:1500966
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2017-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project concerns both algebraic geometry, which seeks to characterize solutions to algebraic equations with geometry, and representation theory, which is a systematic investigation of symmetry. Despite their abstract nature, the answers to many questions in both of these subjects boil down to being able to compute certain numbers. The purpose of this research project is to use new techniques from algebraic geometry and commutative algebra to recast these numbers as combinatorial quantities, making them easier to understand with a computer. By utilizing conceptual connections to other scientific fields, this research will also advance the understanding of several questions in mathematical physics and mathematical biology. Undergraduate students are involved directly as collaborators in the project, providing them with training in advanced mathematical topics and the use of 3D printing techniques in mathematical research.The algebraic geometry of moduli spaces of principal bundles and branching varieties naturally produces two interesting enumeration problems: counting branching multiplicities of a map of reductive groups, and finding the dimension of the spaces of conformal blocks from the Wess-Zumino-Novikov-Witten model of conformal field theory. This research aims to further understanding of these quantities using the theory of Newton-Okounkov bodies and the quickly evolving field of Berkovich geometry. These theories will be used to provide new polyhedral descriptions of conformal blocks and branching multiplicities, as well as further the understanding of the topology and symplectic geometry of the spaces under consideration.
这个研究项目涉及代数几何,它试图用几何来描述代数方程的解,和表示论,这是对对称性的系统研究。尽管这两门学科都很抽象,但它们的许多问题的答案都归结为能够计算某些数字。这个研究项目的目的是使用代数几何和交换代数的新技术将这些数字重新转换为组合量,使它们更容易用计算机理解。通过利用与其他科学领域的概念联系,这项研究也将促进对数学物理和数学生物学中几个问题的理解。本科生作为合作者直接参与该项目,为他们提供高级数学主题的培训以及在数学研究中使用3D打印技术。主丛和分支簇的模空间的代数几何自然产生两个有趣的枚举问题:计算约化群映射的分支重数,并从共形场论的Wess-Zumino-Novikov-Witten模型中找到共形块空间的维数。本研究的目的是利用牛顿-奥肯科夫体理论和快速发展的布氏几何领域来进一步理解这些量。这些理论将被用来提供新的多面体描述的共形块和分支的多重性,以及进一步了解的拓扑和辛几何的空间正在考虑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Manon其他文献
Well-poised hypersurfaces
平衡良好的超曲面
- DOI:
10.1080/00927872.2021.1879828 - 发表时间:
2020 - 期刊:
- 影响因子:0.7
- 作者:
Joseph Cecil;Neelav Dutta;Christopher Manon;Benjamin Riley;Angela Vichitbandha - 通讯作者:
Angela Vichitbandha
Cox rings of moduli of quasi-parabolic principal bundles and the K-Pieri rule
- DOI:
10.1016/j.jcta.2015.11.002 - 发表时间:
2013-09 - 期刊:
- 影响因子:0
- 作者:
Christopher Manon - 通讯作者:
Christopher Manon
Dissimilarity maps on trees and the representation theory of SLm(ℂ)
- DOI:
10.1007/s10801-010-0241-9 - 发表时间:
2010-03 - 期刊:
- 影响因子:0.8
- 作者:
Christopher Manon - 通讯作者:
Christopher Manon
Gorenstein semigroup algebras of weighted trees and ordered points on the projective line
- DOI:
10.1016/j.jalgebra.2011.12.025 - 发表时间:
2008-10 - 期刊:
- 影响因子:0.9
- 作者:
Christopher Manon - 通讯作者:
Christopher Manon
A Fano compactification of the $\mathrm{SL}_2(\mathbb{C})$ free group character variety
$mathrm{SL}_2(mathbb{C})$ 自由群字符变体的 Fano 压缩
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Joseph Cummings;Christopher Manon - 通讯作者:
Christopher Manon
Christopher Manon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Manon', 18)}}的其他基金
Collaborative Research: Toric Geometry, Tropical Geometry, and Combinatorial Buildings
合作研究:环面几何、热带几何和组合建筑
- 批准号:
2101911 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Enumeration Problems in Algebraic Geometry and Representation Theory
代数几何和表示论中的枚举问题
- 批准号:
1802289 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似海外基金
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
- 批准号:
RGPIN-2017-05331 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Applications of algebraic methods in combinatorial problems
代数方法在组合问题中的应用
- 批准号:
RGPIN-2020-05481 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Problems Arising in Combinatorial Algebraic Geometry
组合代数几何中出现的问题
- 批准号:
573649-2022 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
University Undergraduate Student Research Awards
Geometric and algebraic methods in Erdos type problems
鄂尔多斯型问题的几何与代数方法
- 批准号:
RGPIN-2018-03880 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Challenge towards the open problems in the theory of lattice polytopes by algebraic and combinatorial methods
用代数和组合方法挑战晶格多胞体理论中的开放问题
- 批准号:
21KK0043 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Applications of algebraic methods in combinatorial problems
代数方法在组合问题中的应用
- 批准号:
RGPIN-2020-05481 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Geometric and algebraic methods in Erdos type problems
鄂尔多斯型问题的几何与代数方法
- 批准号:
RGPIN-2018-03880 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Decision Problems over the Activity Hierarchy of Automaton Structures
自动机结构活动层次的代数决策问题
- 批准号:
492814705 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
WBP Fellowship
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
- 批准号:
RGPIN-2017-05331 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Teaching and learning to develop the ability to solve problems using algebraic expressions:Analysis of difficulty in understanding and lesson study
教与学培养运用代数表达式解决问题的能力:理解难点分析与课文学习
- 批准号:
21K02573 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




